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1 Introduction

SDPMflut is a Python package to perform subsonic compressible aerodynamic and aeroe-
lastic analysis on wings and bodies using the compressible unsteady Source and Doublet
Panel Method (SDPM). It is largely based on Unsteady Aerodynamics: Potential and
Vortex Methods by G. Dimitriadis [1] and its core components are similar to those in-
cluded in the companion site of the textbook, albeit written in Python instead of Matlab.
The present unsteady aerodynamic formulation of the SDPM is also described in [2, 3],
while the aeroelastic formulation of the SDPM is presented in [4, 5, 6].

2 Theoretical background

Under inviscid, irrotational and isentropic flow assumptions and for small perturbations
the continuity equation simplifies to the linearized small disturbance equation
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where M∞ = Q∞/a∞ is the free stream Mach number, Q∞ is the free stream airspeed
along the x direction, a∞ is the free stream speed of sound and φ is the velocity pertur-
bation potential, defined from
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and u, v, w are the perturbation velocities in the x, y, z directions. Under the same
assumptions, the momentum equations can be integrated and expanded up to second
order, such that
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where p is the pressure at any point in the flow and p∞ is the free stream pressure,
Q2 = u2 + v2 + w2 and ρ∞ the free stream density.

The present source and doublet panel method solves equation 1 for the velocity poten-
tial φ(t) on the surface of a wing or other body and then calculates the pressure coefficient
on the surface from equation 2. Both solutions are evaluated after applying the Fourier
and Prandtl-Glauert transformations. The latter consists in expressing the geometry in
coordinates ξ, η, ζ , such that

ξ = x/β, η = y, ζ = z (3)

where β2 = 1−M2
∞
. Furthermore, the quasi-fixed geometry assumption is enforced, such

that:

• all deformations of all bodies are small so that their geometry can be approximated
as constant in time.

• the deformations are represented mathematically by means of the relative velocity
between the fluid and the surface.

All the assumptions mentioned above mean that the SDPM is a fast and accurate aerody-
namic modelling method as long as structural deformations are small, there is no signifi-
cant flow separation and there are no shock waves in contact with the surface. Further-
more, as the present formulation of the SDPM is purely subsonic, the free stream Mach
number must be less than one. Extensions to supersonic and transonic flow conditions
are under development.

2.1 Calculating the potential on the surface

The fundamental equation of the unsteady compressible Source and Doublet Panel Method
(SDPM) is Green’s theorem in the frequency domain [7, 8]

(

B̂φ(k)−
1

2
I

)

µ(k) + Ĉφ(k)µw(k) = −Âφ(k)σ(k) (4)

Equation 4 is written out for the N panels on the surface of a wing and the Nw panels
on the flat wake, such that k = ωc0/2Q∞ is the reduced frequency, ω is the frequency in
rad/s, c0 is a reference chord length, Âφ(k), B̂φ(k) are N×N unsteady source and doublet

influence coefficient matrices, Ĉφ(k) is the N ×Nw unsteady doublet influence coefficient
matrix of the wake on the wing, σ(k), µ(k) are N × 1 vectors of the source and doublet
strengths on the wing panels and µw(k) is the Nw × 1 vector of the doublet strengths on
the wake panels. The doublet strength on the surface is equal to the unknown potential
on the surface, the source strength on the surface is determined from the impermeability
boundary condition and the doublet strength in the wake is determined from the Kutta
condition

µw(k) = Pe(k)Pcµ(k) (5)
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Applying these two conditions leads to the solution for the doublet strength on the surface

µ(k) = φ(k) = −K(k)µn(k) (8)

where
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Âφ(k)

µn(k) = −
(

1

β
um(k) ◦ nξ + vm(k) ◦ nη +wm(k) ◦ nζ

)

(9)

nξ, nη, nζ are the three components of the unit vectors normal to the panels and pointing
outwards written in Prandtl-Glauert coordinates, and the Hadamard operator ◦ is used
to denote the element-by-element multiplication of vectors or of each of the columns of
a matrix by the same column vector. It should be noted that K(k) has dimensions of
meters while µn(k) has dimensions of m/s, such that µ(k) has dimensions of m2/s.

Once the doublet strengths on the surface, µ(k), have been evaluated, the next step is
to calculate the perturbation velocities on the surface by numerically differentiating µ(k).
The result is

φx(k) = Kx(k)µn(k), φy(k) = Ky(k)µn(k), φz(k) = Kz(k)µn(k) (10)

where Kx(k), Ky(k), Kz(k) are non-dimensional functions of the geometry and finite
difference matrices and are detailed in [3, 4]. The total flow velocities on the surface are
given by

u(k) = um(k) + φx(k), v(k) = vm(k) + φy(k), w(k) = wm(k) + φz(k) (11)

where um(k), vm(k), wm(k) are the relative velocities between the flow and the surface
due to the motion.

The steady solution is obtained for k = 0, such that equation 8 becomes

µ(0) = φ(0) = −K(0)µn(0) (12)
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φx(0) = Kx(0)µn(0), φy(0) = Ky(0)µn(0), φz(0) = Kz(0)µn(0) (16)

u(0) = U∞ + φx(0), v(0) = V∞ + φy(0), w(0) = W∞ + φz(0) (17)

with Q2
∞

= U2
∞
+ V 2

∞
+W 2

∞
, Aφ, Bφ, Cφ being the steady influence coefficient matrices.

Note that the form of equation 1 implies that V∞ << U∞ and W∞ << U∞, such that
only U∞ is comparable to a∞. In other words, the direction of compressibility is the x
axis.

2.2 Calculating the pressure on the surface

Appendix A shows that, after substituting equations 8 to 17 is the Fourier transform of
equation 2, the pressure coefficient on the panel control points is given by

cp(k) = − 1

β
C̄0(k)(nξ ◦ ūm(k))− 2ū(0) ◦ ūm(k)− C̄0(k)(nη ◦ v̄m(k))− 2v̄(0) ◦ v̄m(k)

−C̄0(k)(nζ ◦ w̄m(k))− 2w̄(0) ◦ w̄m(k)−
2ik

c0β
C̄1(k)(nξ ◦ ūm(k))

−2ik

c0
C̄1(k)(nη ◦ v̄m(k))−

2ik

c0
C̄1(k)(nζ ◦ w̄m(k)) (18)

where

C̄0(k) = −2Kx(k) ◦ ū(0)− 2Ky(k) ◦ v̄(0)− 2Kz(k) ◦ w̄(0) + 2M2
∞
Kx(k) ◦ φ̄x(0)

C̄1(k) = 2K(k)− 2M2
∞
K(k) ◦ φ̄x(0) (19)

and the overbars denote the nornalized potential and velocities φ̄(k) = φ(k)/Q∞, ū(k) =
u(k)/Q∞, v̄(k) = v(k)/Q∞, w̄(k) = w(k)/Q∞, ūm(k) = um(k)/Q∞, v̄m(k) = vm(k)/Q∞,
w̄m(k) = wm(k)/Q∞, φ̄x(k) = φx(k)/Q∞, φ̄y(k) = φy(k)/Q∞, φ̄z(k) = φz(k)/Q∞,
Ū∞ = U∞/Q∞, V̄∞ = V∞/Q∞, W̄∞ = W∞/Q∞. It should be noted that both φ̄(k) and
C̄1(k) have dimensions of meters, such that cp(k) is non-dimensional. Substituting the
same normalized quantities into equation 42, such that the steady pressure coefficient
becomes

cp0 = 1− (ū(0) ◦ ū(0) + v̄(0) ◦ v̄(0) + w̄(0) ◦ w̄(0)) +M2
∞

(

φ̄x(0) ◦ φ̄x(0)
)

(20)

Equations 20 and 18 are the required steady and unsteady pressure distributions
around the surface. In order to calculated them, the free stream and relative motion
between the flow and the surface must be specified. The free stream is straightforward;
it depends on the prescribed flight condition, which are usually described by the angle of
attack α0 and the angle of sideslip β0, such that

Ū∞ = cosα0 cos β0, V̄∞ = − sin β0, W̄∞ = sinα0 cos β0 (21)
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The relative velocity due to the unsteady motion at frequency k can be rigid and/or
flexible. For rigid motion around the body’s centre of gravity, having set the latter as the
origin of the coordinate system, the linearized motion-induced velocities are given by

ūm(k) = V̄∞ψ(k)− W̄∞θ(k)− q̄(k)zc + r̄(k)yc − ū(k)

v̄m(k) = −Ū∞ψ(k) + W̄∞φ(k) + p̄(k)zc − r̄(k)xc − v̄(k)(k) (22)

w̄m(k) = Ū∞θ(k)− V̄∞φ(k) + q̄(k)xc − p̄(k)yc − w̄(k)

where xc, yc, zc are the coordinates of the panel control points, u(k), v(k), w(k) are
the rigid-body translation velocities, p(k), q(k), r(k) are the rigid-body roll, pitch and
yaw velocities, φ(k), θ(k), ψ(k) are the roll, pitch and yaw angles and ū(k) = u(k)/Q∞,
v̄(k) = v(k)/Q∞, w̄(k) = w(k)/Q∞, p̄(k) = p(k)/Q∞, q̄(k) = q(k)/Q∞, r̄(k) = r(k)/Q∞.
Note that p̄(k), q̄(k), r̄(k) have dimensions of 1/m so that ūm(k), v̄m(k), w̄m(k), are
non-dimensional.

Flexible deformations are modelled in SDPMflut using a modal description. The body’s
deformation is written as

xFE(t) = Φq(t)

where xFE(t) is the 6NFE×1 vector of degrees of freedom of a finite element model, NFE

is the number of nodes in the model, Φ is a 6NFE ×K matrix of mode shapes, K is the
number of retained modes and q(t) is a K × 1 vector of generalized coordinates. The
mode shape matrix Φ contains translations in the x, y, z directions and rotations around
the x, y, z axes. Then, it can be decomposed as

Φ =

















Φx

Φy

Φz

Φφ

Φθ

Φψ

















where Φx, Φy, Φz are NFE ×K translation mode shapes and Φφ, Φθ, Φψ are NFE ×K
rotation mode shapes in the roll, pitch and yaw directions respectively. The mode shapes
of the finite element model must be interpolated onto the control points of the SDPM
grid, such that they become N ×K matrices Φ̃x, Φ̃y, Φ̃z, Φ̃φ, Φ̃θ, Φ̃ψ, the tilde denoting
interpolated quantities and N being the number of SDPM panels. Consequently, the
motion-induced velocities are given by

ūm(k) = V̄∞Φ̃ψq(k)− W̄∞Φ̃θq(k)−
2ik

c0
Φ̃xq(k)

v̄m(k) = −Ū∞Φ̃ψq(k) + W̄∞Φ̃φq(k)−
2ik

c0
Φ̃yq(k) (23)

w̄m(k) = Ū∞Φ̃θq(k)− V̄∞Φ̃φq(k)−
2ik

c0
Φ̃zq(k)

Substituting equations 22 and/or 23 into expression 18 results in the numerical values
of the oscillatory pressure distribution at frequency k. Note that cp(k) is a complex
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quantity. Note that u(k), v(k), w(k), p(k), q(k), r(k) and q(k) are known if the motion
is prescribed. If the motion is free, the pressure distribution can be written in the form
of pressure derivatives. Then, the pressure distribution due to the rigid motion is written
as

cp(k) = cpu(k)u(k) + cpv(k)v(k) + cpw(k)w(k) + cpθ(k)θ(k)

+cpψ(k)ψ(k) + cpp(k)p(k) + cpq(k)q(k) + cpr(k)r(k)

+cpu̇(k)u(k) + ikcpv̇(k)v(k) + ikcpẇ(k)w(k) + ikcpṗ(k)p(k)

+ikcpq̇(k)q(k) + ikcpṙ(k)r(k) (24)

and SDPMflut calculates the N × 1 pressure derivative vectors cpu(k), cpv(k), etc, expres-
sions for which are given in appendix B. For flexible motion, the pressure distribution is
written as

cp(k) =
(

cpφ(k) + cpθ(k) + cpψ(k)
)

q(k)

+ik
(

cpẋ(k) + cpẏ(k) + cpż(k) + cp
φ̇
(k) + cp

θ̇
(k) + cp

ψ̇
(k)

)

q(k)

+ (ik)2
(

cpẍ(k) + cpÿ(k) + cpz̈(k)
)

q(k) (25)

and SDPMflut calculates the N × K pressure derivative matrices cpφ(k), cpθ(k), cpψ(k)
etc, expressions for which are given in appendix D.

2.3 Calculating the aerodynamic loads

The steady aerodynamic loads acting on each panel are given by

Fx(0) = −cp0 ◦ s ◦ nx

Fy(0) = −cp0 ◦ s ◦ ny

Fz(0) = −cp0 ◦ s ◦ nz (26)

Mx(0) = (yc − yf0)Fz(0)− (zc − zf0)Fy(0)

Mx(0) = −(xc − xf0)Fz(0) + (zc − zf0)Fx(0)

Mx(0) = (xc − xf0)Fy(0)− (yc − yf0)Fx(0)

where Fx(0), Fy(0), Fz(0) are N × 1 vectors of aerodynamic force per Pascal, Mx(0),
My(0), Mz(0) are N × 1 vectors of aerodynamic moment per Pascal around point
(xf0 , xf0 , xf0), nx, nx, nx, are the N × 1 components of the unit vectors normal to
the panels in cartesian coordinates, s is the N × 1 vector of the areas of the panels, cp0 is
calculated from equation 20. The negative signs in these equations are due to the fact that
the unit vectors normal to the surfaces are pointing outwards. Similarly, the unsteady
aerodynamic loads at k are calculated from

Fx(k) = −cp(k) ◦ s ◦ nx

Fy(k) = −cp(k) ◦ s ◦ ny

Fz(k) = −cp(k) ◦ s ◦ nz (27)
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Mx(k) = (yc − yf0)Fz(k)− (zc − zf0)Fy(k)

Mx(k) = −(xc − xf0)Fz(k) + (zc − zf0)Fx(k)

Mx(k) = (xc − xf0)Fy(k)− (yc − yf0)Fx(k)

where cp(k) is calculated from equation 24 or 25.

2.4 Calculating the flutter solution

The aeroelastic equation for flexible motion is given by

Aq̈+Cq̇ +Eq =
1

2
ρ∞Q

2
∞

(

Q0(k) + ikQ1(k) + (ik)2Q2(k)
)

q (28)

where A, C, E are K × K structural modal mass, damping and stiffness matrices and
Q0(k), Q1(k), Q2(k) are generalized aerodynamic stiffness, damping and mass matrices,
given by

Q0(k) =
(

Φ̃T
xFx0(k) + Φ̃T

yFy0(k) + Φ̃T
z Fz0(k)

)

Q1(k) =
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Φ̃T
xFx1(k) + Φ̃T

yFy1(k) + Φ̃T
z Fz1(k)

)

(29)

Q2(k) =
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)

where

Fx0(k) = −
(
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)

◦ s ◦ nx

Fx1(k) = −
(
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θ̇
(k) + cp
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(k)

)

◦ s ◦nx

Fx2(k) = −
(

cpẍ(k) + cpÿ(k) + cpz̈(k)
)

◦ s ◦ nx

Fy0(k) = −
(

cpφ(k) + cpθ(k) + cpψ(k)
)

◦ s ◦ ny

Fy1(k) = −
(

cpẋ(k) + cpẏ(k) + cpż(k) + cp
φ̇
(k) + cp

θ̇
(k) + cp

ψ̇
(k)

)

◦ s ◦ny (30)

Fy2(k) = −
(

cpẍ(k) + cpÿ(k) + cpz̈(k)
)

◦ s ◦ ny

Fz0(k) = −
(

cpφ(k) + cpθ(k) + cpψ(k)
)

◦ s ◦ nz

Fz1(k) = −
(

cpẋ(k) + cpẏ(k) + cpż(k) + cp
φ̇
(k) + cp

θ̇
(k) + cp

ψ̇
(k)

)

◦ s ◦nz

Fz2(k) = −
(

cpẍ(k) + cpÿ(k) + cpz̈(k)
)

◦ s ◦ nz

Equation 28 is solved using determinant iteration for the system eigenvalues at each
selected value of the free stream airspeed. The objective is to solve

∣

∣

∣
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c20
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2
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Q2(k)
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)
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2
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Q0(k)

)∣

∣

∣

∣

= 0 (31)

for the reduced eigenvalue p = g + ik, where g is the reduced damping and k the reduced
frequency. Both the real and imaginary parts of the determinant must be equal to zero,
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so that there are two equations with two unknowns, g and k. The problem is nonlinear
so it must be solved iteratively, starting from an initial guess g = 0 and k = ωnic0/2Q∞,
where ωni is the ith wind-off natural frequency of the system. Once pi has been evaluated
for one airspeed, it is used as the initial guess for the next airspeed and so on, until pi
is available at all Q∞ values of interest. Then, the entire process is repeated for all the
other wind-off natural frequencies. Finally, the ith system eigenvalue at Q∞ is calculated
from

λi(Q∞) =
2Q∞

c0
pi(Q∞)

for i = 1, . . . , K. The fact that k varies during the determinant iteration procedure means
that Q0(k), Q1(k) and Q2(k) must be calculated at each current value of k. In order to
reduce the cost of the flutter solution, Q0(k), Q1(k) andQ2(k) are calculated at a number
of pre-selected k values and then interpolated as needed.

The system is stable as long as all λi(Q∞) have negative real parts. This condition is
expressed in SDPMflut in terms of the damping ratio

ζi(Q∞) = −ℜ(λi(Q∞))

|λi(Q∞)|

so that ζi(Q∞) > 0 for stability. If any ζi(Q∞) becomes negative inside the airspeed range
of interest, SDPMflut repeats the determinant iteration procedure in the neighbourhood of
the sign change in order to pinpoint accurately the flutter airspeed QF at which ζi(QF ) =
0. Note that, since g = 0 at the flutter speed, then the flutter eigenvalue becomes p = ikF ,
kF being the flutter reduced frequency; consequently, this second round of determinant
iterations solves the problem

∣

∣

∣

∣

(

2Q2
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2
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FQ1(kF )

)
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2
ρ∞Q

2
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)∣

∣

∣

∣

= 0 (32)

for the two unknowns QF and kF . Then, the dimensional flutter frequency is obtained
from

ωF =
2QF

c0
kF

3 Installing and running SDPMflut

SDPMflut is written in Python and C. To run it you need to have a recent Python
distribution and a C compiler installed on your system. The installation steps are the
following:

1. Unzip the SDPMflut_v0.6.zip file, place anywhere in your file space, then edit the
line starting with install_dir= in

• AGARD445_6/flutter_SDPM_AGARD.py
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• NACARML5/unsteady_SDPM_delta.py

• NACARML5/unsteady_SDPM_straight.py

• NACARML5/unsteady_SDPM_swept.py

• NASATMX72799/flutter_SDPM_NASATMX72799.py

• NASATND344/unsteady_SDPM_NASATND344.py

• NASATM84367/steady_SDPM_NASATM84367.py

• PAPA/flutter_SDPM_NACA0012.py

• PAPA/flutter_SDPM_BSCW.py

• PAPA/flutter_SDPM_NACA64A010.py

• T_tail/flutter_SDPM_Ttail.py.

• Theodorsen/flutter_SDPM_Theodorsen.py.

You need to give the absolute path to the Common directory, as installed on your
system. Mac OS/Linux example:
install_dir=r"/Users/Username/Documents/Python/SDPMflut_v0.6/Common/"

Windows example:
install_dir=r"C:\Users\Username\Documents\Python\SDPMflut\Common"

2. Compile the C codes sdpminfso.c and sdpminf_unsteady_subsonicso.c found in
directory Common. At your C compiler’s terminal type:

• gcc -fPIC -shared -o sdpminfso.so sdpminfso.c

• gcc -fPIC -shared -o sdpminf_unsteadyso.so sdpminf_unsteadyso.c

assuming that you have GNU C installed. The same commands with cc instead of gcc
may work.

If you do not have a Python distribution or IDE on your system you can install
Anaconda and Spyder:

1. Download Anaconda from https://docs.anaconda.com/anaconda/install/.

2. Run the installer, selecting the default installation options.

3. On Windows, Anaconda installs its own version of the DOS command window,
called Anaconda Prompt. Launch Anaconda Prompt.

4. On Mac OS/Linux launch the terminal.

5. Type conda - - version (no space between the dashes).

6. Instal Spyder from https://www.spyder-ide.org.

7. Launch Spyder and go to Preferences->Python interpreter
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8. Click on Use the following Python interpreter and select
/opt/anaconda3/bin/python

or whatever version has been installed by Anaconda.

9. Click Apply, OK and then from the Consoles menu select Restart kernel

10. It is likely that Spyder will complain that the interpreter you selected does not have
the right version of the Spyder Kernels.

11. Launch the Anaconda Prompt or terminal as Administrator. Type:
conda install spyder-kernels=3.0

or whatever version Spyder has asked for.

12. Quit and restart Spyder.

If you do not have a C compiler on your system, you can install one depending on
your system architecture:

• On Mac OS install Xcode and the command line tools. You can also optionally
instal GCC (GNU Compiler Collection).

• On Linux install GCC (GNU Compiler Collection).

• On Windows there are many options. For example, you can download MinGW
from https://www.mingw-w64.org/downloads/. Extract the zip file to C:\Prog

or wherever else you wish. Launch the Command Prompt and set the path:

– Temporary option: type set path=C:\Prog\mingw64\bin;%PATH%

– Permanent option: type setx PATH ^%PATH^%;"C:\Prog\mingw64\bin"

To run SDPMflut, Launch Spyder and open one of the test cases. For example, you
can open PAPA/flutter_SDPM_NACA0012.py. Click on Rune file or type F5.

4 Structure of SDPMflut

SDPMflut does not have a user interface. For each test case there is a subdirectory inside
the installation directory that contains one or more .py files and may also contain one or
more .mat files. The file names of the files to run end with .py and start with

• steady_SDPM_: These files calculate only steady aerodynamic pressures and loads.

• unsteady_SDPM_: These files calculate both steady and unsteady aerodynamic pres-
sures and loads.

• flutter_SDPM_: These files calculate steady and unsteady aerodynamic pressures
and loads, as well as flutter solutions.

The current distribution contains the following test cases:
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• AGARD445_6: Flutter solution for the weakened AGARD 445.6 wing described in [9].

• NACARML5: Calculation of aerodynamic stability derivatives for a straight tapered
wing, a swept tapered wing and a delta wing, described in [10, 11, 12, 13].

• NASATMX72799: Flutter solution for the flat plate swept wing with and without
winglets described in [14].

• NASATND344: Steady and unsteady pressure calculation for the rectangular wing
forced to oscillate in [15].

• NASATM84367: Steady pressure calculation for the swept wing described in [16].

• PAPA: Flutter solution for the rectangular NACA 0012, NACA 64A010 and BSCW
wings tested by NASA on the Pitch and Plunge Apparatus (PAPA) described in [17,
18, 19].

• T-tail: Flutter solution for the rectangular Van Zyl T-tail described in [20, 21, 22].

• Theodorsen: Flutter solution for a 2D infinitely thin flat plate airfoil with pitch
and plunge degrees of freedom at incompressible conditions and comparison to
Theodorsen theory results [23].

The filename of each of the run files ends with the name of the test case. When the file is
run, it calls functions in the Common directory; it may also call functions in the test case
directory and load data from .mat files in the test case directory.

The structure of each run file is the following:

1. Load libraries, C functions and data types.

2. Define flight conditions.

3. Input geometries for all bodies in the flow.

4. Optional: Input structural models for all bodies.

5. For each of the selected flight conditions:

• Calculate the steady aerodynamic pressures and loads at prescribed values of
the Mach number, angle of attack and angle of sideslip.

• Optional: For each of the selected reduced frequencies calculate the unsteady
aerodynamic pressures derivatives with respect to rigid-body or flexible motion
coordinates.

• Optional: Carry out flutter analysis to calculate the flutter speed and fre-
quency.

6. Plot results.
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4.1 Geometry definition

Only wing geometry definitions are included in the current distribution; fuselage defini-
tions will be included in a future release. Wings are defined using trapezoidal sections,
defined in the tp_trap data type. Each element of tp_trap is a trapezoidal section with
the following parameters:

• rootchord: The chord length of the root of the current trapezoidal section.

• xledist: The chordwise distance of the root of the current trapezoidal section to
the tip of the previous trapezoidal section.

• span: The span of the current trapezoidal section.

• taper: The taper ratio of the current trapezoidal section, i.e. the ratio of the tip
chord to the root chord of the trapezoidal section.

• sweepLE: The sweep angle at the leading edge of the current trapezoidal section.

• roottwist: The twist angle at the root of the current trapezoidal section.

• tiptwist: The twist angle at the tip of the current trapezoidal section.

• twistcent: The non-dimensional chordwise position of the axis around which the
wing is twisted, taking values between 0 and 1.

• dihedral: The dihedral angle of the current trapezoidal section.

• rootairfoil: The name of the root airfoil of the current trapezoidal section. This
name must be a function defined in Common/airfoils.py. If your airfoil is not al-
ready defined (most likely), you need to write a function for it in Common/airfoils.py.

• rootairfoilparams: The parameters of the root airfoil. These depend on the airfoil
type and its definition; they may be thickness, camber, NACA number etc. For
NACA four- and five-digit airfoils the parameter teclosed determines the thickness
of the trailing edge. If teclosed=0, the original thickness equation is used and the
trailing edge thickness is finite. If teclosed=1, a modified thickness equation is
used and the trailing edge thickness is zero.

• tipairfoil: The name of the tip airfoil of the current trapezoidal section. The
root and tip airfoils are interpolated linearly to obtain the airfoil shape in between.

• tipairfoilparams: The parameters of the tip airfoil.

There can be any number of trapezoidal sections; new sections are needed when any of
the parameters defined in tp_trap change. The root and tip airfoil and their parameters
can be identical. The SDPM grid for the complete wing is created using the parame-
ters for all trapezoidal sections by calling function SDPMgeometry_trap_fun in package
SDPMgeometry.py with the following inputs:
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• body: Structured array of type tp_body (see later) holding the SDPM grid infor-
mation for all bodies present in the flow.

• ibody: The index of body for which the SDPM grid is to be calculated.

• m: Number of chordwise panels on the upper surface of the wing. There will be
another m panels on the lower side for a total of 2*m panels. The value of m is
constant for all trapezoidal sections.

• mw: Number of chordwise panels in the wake. This is calculated as mw=m*nchords,
where nchords is the length of the wake in root chord lengths. Recommended value:
nchords=10.

• nhalf: Number of spanwise panels on the half-wing (semispan wing). If a full-span
wing is requested (mirroredwing=2, see later), there will be another nhalf on the
other half for a total of 2*nhalf panels.

• mirroredwing: How to arrange the wing. Each wing is initially created as a right
half-wing (semispan wing). If mirroredwing=-1 it is changed to a left half-wing. If
mirroredwing=1 it remains a right half-wing. If mirroredwing=2 a full-span wing
is created by mirroring the right half-wing to the left.

• linchord: The distribution of chordwise panels. if linchord=0 the distribution will
be such that panel density is highest around the leading edge and lowest around the
trailing edge. If linchord=1 the chordwise distribution will have constant density.

• linspan: The distribution of spanwise panels. if linspan=0 the distribution will
be such that panel density is highest near the wingtip and root. If linspan=1 the
spanwise distribution will have constant density.

• trap: Structured array of type tp_trap containing the geometrical information for
all trapezoidal sections for the current wing.

• name: The name of the wing. This is not important for the calculation, it only helps
identify the wing when more than one wings are defined.

• dir_tau: Direction in which the unit tangent vector for this wing has a zero com-
ponent. dir_tau=1 denotes the x direction and is suitable for fuselages. dir_tau=2
denotes the y direction and is suitable for horizontal wings. dir_tau=3 denotes the
z direction and is suitable for vertical wings and fins.

• rollpitchyaw: A three-element vector containing angles by which to roll, pitch and
yaw the complete wing. To define a fin, set:
rollpitchyaw=np.array([0, 0, 90])*np.pi/180

Do not use rollpitchyaw to impose a dihedral angle, use the dihedral parameter
of the tp_trap data type instead.

• rollpitchyaw_cent: The point around which the rotations defined in rollpitchyaw
are performed.
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• lexyz: A three-element array containing the coordinates of the root leading edge.

• nmin: The minimum number of spanwise panels in each trapezoidal section. Rec-
ommended value: nmin=3.

(a) linchord=0 (b) linchord=1

Figure 1: Chordwise panel numbering and distributions

Figure 1 illustrates the chordwise panelling scheme of wings in SDPMflut. There are
m panels on the lower side and m panels on the upper side of the wing section, for a total
of 2m panels and 2m+1 panel vertices. The panel vertex numbering starts with 1 at the
lower trailing edge point and proceeds upstream, so that the leading edge is vertex m+1.
The numbering then proceeds downstream on the upper surface, so that the upper trailing
edge is vertex 2m + 1. Figure 1(a) plots the non-uniform chordwise panel distribution
(linchord=0), whereby the paneling is denser around the leading edge. Figure 1(b) plots
the uniform chordwise panel distribution (linchord=1), whereby the paneling is constant
all around the wing section. It can be seen that the non-uniform distribution matches
more closely the exact shape of the airfoil around the leading edge.

Figure 2 illustrates the spanwise panelling scheme of wings in SDPMflut. There are n/2
panels on the left side and n/2 panels on the right side of the wing, for a total of n panels
and n + 1 panel vertices. The panel vertex numbering starts with 1 at the left wingtip
and proceeds to the right, so that the centreline is vertex n/2+1 and the right wingtip is
vertex n+1. Figure 2(a) plots the non-uniform spanwise panel distribution (linspan=0),
whereby the paneling is denser around the wingtips and centreline. Figure 2(b) plots the
uniform spanwise panel distribution (linspan=1), whereby the paneling is constant all
along the span.

Figure 3 draws a right half-wing created by SDPMflut using three trapezoidal sections.
The inboard section has a high taper ratio, the middle section a lower taper ratio and
the outer section a high dihedral angle, a shorter root chord and a different airfoil. The
figure also demonstrates the coordinate system used by SDPMflut: the x axis points
downstream, the y axis towards the right wingtip and the z axis upwards. Note that this
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(a) linspan=0 (b) linspan=1

Figure 2: Spanwise panel numbering and distributions

axis system is different to the usual body-fixed axes used in flight dynamics, whereby the
x axis points upstream and the z axis downwards. Finally, the figure also plots a section
of the wake model; the wake panels are attached to the lower trailing edge segments of
their corresponding wing panels and extend downstream in the x direction. The chordwise
spacing of the panels is set to c0/m, where c0 is the wing’s root chord.

The geometries of all the bodies of a particular test case are stored in an array of type
tp_body. Each element of this array type contains the following data:

• m: Number of chordwise panels on the upper surface of the wing.

• n: Number of spanwise panels on the upper surface of the wing. This number is set
by function SDPMgeometry_trap_fun, depending on the values of nhalf, nmin and
mirroredwing.

• mw: Number of chordwise panels in the wake.

• Xp0, Yp0, Zp0: (2m+1)× (n+1) matrices containing the x, y, z coordinates of the
wing panel vertices in cartesian coordinates.

• Xc0, Yc0, Zc0: 2m×n matrices containing the x, y, z coordinates of the wing panel
control points (centroids) in cartesian coordinates.

• Xc0all, Yc0all, Zc0all: 2mn× 1 vectors containing the x, y, z coordinates of the
wing panel control points (centroids) in cartesian coordinates.

• Xw0, Yw0, Zw0: (mw+1)× (n+1) matrices containing the x, y, z coordinates of the
wake panel vertices in cartesian coordinates.

• nx0, ny0, nz0: 2m × n matrices containing the x, y, z components of unit vectors
normal to the wing panels and pointing outwards in cartesian coordinates.
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Figure 3: Coordinate system used by SDPMflut

• nx0all, ny0all, nz0all: 2mn×1 vectors containing the x, y, z components of unit
vectors normal to the wing panels and pointing outwards in cartesian coordinates.

• s0: 2m × n matrix containing the surface areas of the wing panels in cartesian
coordinates.

• s0all: 2mn× 1 vector containing the surface areas of the wing panels in cartesian
coordinates.

• c0: A reference chord length, currently it is the root chord.

• b: The total span, calculated from the trapezoidal section information stored in
array trap.

• S: The planform area, calculated from the trapezoidal section information stored in
array trap.

• AR: Aspect ratio of the full-span wing.

• Xp, Yp, Zp: (2m + 1) × (n + 1) matrices containing the ξ, η, ζ coordinates of the
wing panel vertices in Prandtl-Glauert coordinates.

• Xc, Yc, Zc: 2m × n matrices containing the ξ, η, ζ coordinates of the wing panel
control points (centroids) in Prandtl-Glauert coordinates.

• Xcall, Ycall, Zcall: 2mn×1 vectors containing the ξ, η, ζ coordinates of the wing
panel control points (centroids) in Prandtl-Glauert coordinates.
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• Xw, Yw, Zw: (mw + 1) × (n + 1) matrices containing the ξ, η, ζ coordinates of the
wake panel vertices in Prandtl-Glauert coordinates.

• nx, ny, nz: 2m×n matrices containing the ξ, η, ζ components of unit vectors normal
to the wing panels and pointing outwards in Prandtl-Glauert coordinates.

• nxall, nyall, nzall: 2mn × 1 vectors containing the ξ, η, ζ components of unit
vectors normal to the wing panels and pointing outwards in Prandtl-Glauert coor-
dinates.

• s: 2m×n matrix containing the surface areas of the wing panels in Prandtl-Glauert
coordinates.

• sall: 2mn × 1 vector containing the surface areas of the wing panels in Prandtl-
Glauert coordinates.

• tauxx, tauxy, tauxz: 2m × n matrices containing the ξ, η, ζ components of unit
vectors tangent to the wing panels in Prandtl-Glauert coordinates. These vectors
are aligned according to the value of dir_tau.

• tauyx, tauyy, tauyz: 2m×n matrices containing the ξ, η, ζ components of another
set of unit vectors tangent to the wing panels in Prandtl-Glauert coordinates. These
vectors are orthogonal to vectors nx, ny, nz and tauxx, tauxy, tauxz.

• tmx, tmy, tmz: 2m × n matrices containing the ξ, η, ζ components of unit vectors
tangent to the wing panels and pointing in the chordwise direction in Prandtl-
Glauert coordinates.

• tnx, tny, tnz: 2m × n matrices containing the ξ, η, ζ components of unit vectors
tangent to the wing panels and pointing in the spanwise direction in Prandtl-Glauert
coordinates.

• sm, sn: 2m × n matrices containing the mean chordwise and spanwise lengths,
respectively, of the wing panels in Prandtl-Glauert coordinates.

• Xcw, Ycw, Zcw: mw×n matrices containing the ξ, η, ζ coordinates of the wake panel
control points (centroids) in Prandtl-Glauert coordinates.

• nxw, nyw, nzw: mw × n matrices containing the ξ, η, ζ components of unit vectors
normal to the wake panels and pointing upwards in Prandtl-Glauert coordinates.

• tauxxw, tauxyw, tauxzw: mw×n matrices containing the ξ, η, ζ components of unit
vectors tangent to the wake panels in Prandtl-Glauert coordinates. These vectors
are aligned according to the value of dir_tau.

• tauyxw, tauyyw, tauyzw: mw×n matrices containing the ξ, η, ζ components of an-
other set of unit vectors tangent to the wake panels in Prandtl-Glauert coordinates.
These vectors are orthogonal to vectors nxw, nyw, nzw and tauxxw, tauxyw, tauxzw.
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• cp0: 2m× n matrix containing the steady pressure coefficients on the wing panels.

• Fx0, Fy0, Fz0: 2m×nmatrices containing the x, y, z components of the aerodynamic
forces acting on the wing panels in Newtons per Pascal. In order to obtain the
aerodynamic forces in Newtons they must be multiplied by the free stream dynamic
pressure. In order to obtain the forces in force coefficient form they must be divided
by the reference area.

• Mx0, My0, Mz0: 2m × n matrices containing the aerodynamic moments acting on
the wing panels around the x, y, z axes in Newton meters per Pascal. In order to
obtain the aerodynamic moments in Newtons they must be multiplied by the free
stream dynamic pressure and a reference length. In order to obtain the moments in
moment coefficient form they must be divided by the reference area.

• mu0: 2m× n matrix containing the steady doublet strengths on the wing panels.

• muw0: 2m× n matrix containing the steady doublet strengths on the wake panels.

• Phi_xall, Phi_yall, Phi_zall: 2mn×K vectors containing the modal translations
in the x, y, z directions at the wing panel control points.

• Phi_phiall, Phi_thetaall, Phi_psiall: 2mn ×K vectors containing the modal
rotations around the x, y, z axes at the wing panel control points.

Function SDPMgeometry_trap_fun calculates all quantities in cartesian coordinates.
All quantities in Prandtl-Glauert coordinates are calculated by function PGtransform in
package SDPMcalcs.py. The steady aerodynamic calculations are carried out in the run
file. The modal translations and rotations are calculated by function SDPMmodeinterp in
package FEmodes.py.

5 Structural model input

The structural model is composed of the K ×K structural modal matrices A, C, E and
the NFE ×K mode shape matrices Φx, Φy, Φz, Φφ, Φθ, Φψ calculate on a finite element
grid defined by the NFE × 1 vectors xFE, yFE and, optionally, zFE . Currently, two types
of mode shapes are used in SDPMflut:

• Beam mode shapes: Translation and rotation mode shapes of beams with coordi-
nates xFE, yFE, zFE. This type of mode shape is used in test case
T_tail/flutter_SDPM_Ttail.py.

• Plate mode shapes: Translation and rotation mode shapes of flat plates with co-
ordinates xFE, yFE, zFE , with zFE = 0.0. This type of mode shape is used in all
other flexible flutter test cases.

The mode shapes in all the test cases are normalized such that the mass matrix A is the
unit matrix. The damping and stiffness matrices are calculated by functions FE_matrices
or FE_matrices_beam in package FEmodes.py, which takes the following inputs:
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 3

Figure 4: First four mode shapes of the NASA TMX 72799 wing with heavy winglet.

• fname: The name of a .mat file in the current working directory that contains the
structural mass and stiffness matrices, A and E, as well as Φx, Φy, Φz, Φφ, Φθ, Φψ,
xFE, yFE and zFE. Currently, the only means for inputting structural information
to SDPMflut is by means of Matlab .mat files. Future versions will introduce other
input methods.

• nmodes: The number of modes, K, selected by the user for the flutter analysis. The
maximum number of modes is the number of modes contained in fname. Fewer
modes can be specified.

• zeta0: A 1D array with nmodes elements containing the values of the structural
damping ratios corresponding to each mode.

Once the modal matrices and mode shapes have been acquired, the latter are interpo-
lated onto the SDPM grids of all the bodies in the flow using function SDPMmodeinterp

in package FEmodes.py, except for test case T_tail/flutter_SDPM_Ttail.py for which
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(a) Mode 1 (b) Mode 2

(c) Mode 3

Figure 5: T-tail deformed parallel to the first three mode shapes[3].

function ttailmodesinterp in package VanZylTtail.py is used instead. Currently, func-
tion SDPMmodeinterp works only for single wings with flat plate mode shapes. The wings
are cantilevered at the root so that the mode shapes are defined on the right half-wing, on
a x-y grid with NFE nodes. These mode shapes are interpolated onto the mean surface
(camber surface) of the right-hand side of the SDPM grid using 2D scattered data cubic
interpolation, with respect to the x and y coordinates of the mean surface. The inter-
polated mode shapes are mirrored to the left half-wing and applied to both the upper
and lower surfaces. Figure 4 plots the first four mode shapes of the NASA TMX 72799
wing with heavy winglet, corresponding to test case flutter_SDPM_NASATMX72799.py

with option winglet=3. It can be seen that the interpolated mode shapes are symmetric
across the y = 0 plane. Mode 1 is mostly first wing bending, mode 2 second wing bending
with a bit of first wing torsion, mode 3 second wing torsion with a bit of winglet bending
and mode four third wing bending with a bit of torsion.

Function ttailmodesinterp works for all the components of the Van Zyl T-tail (fin,
left and right horizontal tailplanes and fin fairing) and beam mode shapes. The T-
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tail structural model is cantilevered at the root of the fin beam. The mode shapes are
interpolated separately onto the fin, tailplanes and fin fairing using radial basis functions.
The interpolation is carried out directly onto the two surfaces of each body, using x and z
control point coordinates for the fin and fin fairing and x and y control point coordinates
for the two tailplanes. Only the nodes of the structural model that are relevant to each
body are used in the interpolations. Figure 5 plots the T-tail deformed parallel to the
first three modes, comparing the deformed structural grid to the deformed SDPM grid.

6 Input file

Every SDPMflut input file starts with setting the value of install_dir to tell Python
where to look for the files in ./Common. Next, the necessary libraries and data types are
imported:

# Input installation directory

install_dir=r"/Users/Username/Documents/Python/SDPMflut_v0.5/Common/"

# Import libraries and packages

import numpy as np

import matplotlib.pyplot as plt

import sys

sys.path.append(install_dir)

from SDPMgeometry import SDPMgeometry_trap_fun

import flutsol

import FEmodes

import SDPMcalcs

# Acquire SDPMflut trap and body data types

tp_trap, tp_body, _=SDPMcalcs.SDPMdtypes()

Additional libraries can be imported, depending on the needs of each project.
The next step is to define the flight conditions for the SDPMflut analysis. The mini-

mum set of variables that need to be defined are:

• Machdata: The free stream Mach number.

• rhodata: The free stream density.

• alpha0: The steady (or mean) angle of attack

• beta0: The steady (or mean) angle of sideslip

Each of these variables can be a scalar or an array with nruns elements, where nruns is
the desired number of runs of the SDPMflut analysis at different flight conditions. Note
that different runs can be defined not only in terms of flight conditions, but also in terms
of some geometric or structural parameter(s), such as the tailplane incidence in example
T_tail. The units used in SDPMflut can SI or imperial, as long as they are consistent.
All angles must given in rad and all frequencies in rad/s.

Next, the geometries of all the bodies present in the flow are defined. The first step is
to set the number of bodies and to initialize the body structured array:
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# Set number of bodies

nbody=1

# Initialize body struct array

body=np.zeros(nbody,dtype=tp_body)

Then, the geometry of each body must be inputted, starting with:

# Input first body

ibody=0 # Index of body

name=’wing’ # Name of body

# Choose numbers of panels for this wing and its wake

nhalf=10 # Number of spanwise panels per half-wing.

m=20 # Number of chordwise panels

nchords=10 # Set length of wake in chord lengths

# Calculate number of chordwise wake rings

mw=m*nchords

# Set number of trapezoidal sections for this wing

ntrap=1

# Initialize trapezoidal section struct array

trap=np.zeros(ntrap,dtype=tp_trap)

These lines tell the software which body is being defined, what is its desired grid size
and how many trapezoidal sections are necessary for its definition. The array trap is
initialized and values for all of its fields must be given, as defined in section 4.1. Then,
the geometric data of each trapezoidal section, are inputted into the trap array.

# Arrange all data into trapezoidal sections

trap[0]=np.array([(c0,xledist,bhalf,lamda,LamdaLE,roottwist,tiptwist,

twistcent,dihedral,rootairfoil,rootairfoil_params,tipairfoil,

tipairfoil_params)],dtype=tp_trap)

The panel aspect ratio, panelAR, can be defined for a complete body or for a trape-
zoidal section. For a complete wing, it is recommended that the panel aspect ratio should
not take values less than 0.1; 2D test cases do not have to conform to this recommendation.
The input files in the test cases check for this using:

# Calculate panel aspect ratio

panelAR=(c0/m)/(bhalf/nhalf)

if panelAR < 0.1:

sys.exit(’Panel aspect ratio too low. Increase n or decrease m.’)

The user can remove these lines, they only serve as a warning.
Finally, the SDPM grid for body ibody is generated:

# Calculate vertices of wing panels

body=SDPMgeometry_trap_fun(body,ibody,m,mw,nhalf,mirroredwing,linchord,

linspan,trap,name,dir_tau,rollpitchyaw,rollpitchyaw_cent,lexyz,nmin)
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where all of the inputs to function SDPMgeometry_trap_fun must be set beforehand,
as detailed in section 4.1. Once the SDPM grids for all bodies have been generated, the
software will calculate the numbers and indices of panels, spanwise panels and wake panels
in all bodies stored in struct array body and create structured array allbodies:

# Assemble the indices of the body panels, spanwise body panels, wake

# panels etc. for all bodies.

allbodies=SDPMcalcs.allbodyindex(body)

Array allbodies is of type tp_allbodies and contains only outputs of the software. It
is a placeholder for information taken from all the bodies present in the flow. Six of its
fields contain flow information that is not available elsewhere:

• barphix0, barphiy0,barphiz0: Normalized steady perturbation velocities at the
control points of all the panels of all the bodies.

• baruc0, barvc0,barwc0: Normalized steady total velocities (including the free stream)
at the control points of all the panels of all the bodies.

The other fields in allbodies concerning flow quantities (e.g. cp0) can also be found in
the elements of body.

The next step is to carry out the desired analysis: there are three analysis types:

1. Calculation of steady aerodynamic pressures, surface velocities and loads on the
control points of the panels of all the bodies.

2. Calculation of unsteady aerodynamic pressures, surface velocities and loads on the
control points of the panels of all the bodies. This analysis requires the steady
aerodynamic calculation.

3. Calculation of the flutter speed and frequency. This analysis requires both steady
and unsteady aerodynamic calculations.

Each of the analysis will be demonstrated separately by means of the relevant test cases
that come with the software.

6.1 Steady aerodynamic analysis

Once the flight conditions and body geometries have been defined, steady aerodynamic
analysis is carried out by typing:

# Calculate steady aerodynamic pressures and loads

body,allbodies,Aphi,Bphi,Cphi,barUinf,barVinf,barWinf=

SDPMcalcs.steadysolve(body,allbodies,cp_order,Mach,beta,alpha0,

beta0,xf0,yf0,zf0,install_dir)

where xf0, yf0, zf0 are the Cartesian coordinates of a point around which rotations
and/or moments are to be calculated. This point can be the centre of gravity or any
rotation axis; xf0, yf0, zf0 can all be set to 0.0 if no rotations or moments are to be
calculated. Function SDPMcalcs.steadysolve calculates:
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1. barUinf,barVinf,barWinf: the non-dimensional free stream components, Ū∞, V̄∞,
W̄∞, of equation 21

2. the Prandtl-Glauert transformation of equation 3 for all geometries

3. Pe0,Pc: the matrices Pe(0) in equation 15 and Pc in equation 6

4. Aphi,Bphi,Cphi: the steady aerodynamic influence coefficient matrices, Aφ, Bφ,
Cφ, in equation 13

5. mu0: the steady doublet strength on the body panels, µ̄(0) = µ(0)/Q∞, from equa-
tions 12, 13 and 14

6. muw0: the steady doublet strength on the wake panels, µ̄w(0) = µw(0)/Q∞, from
equation 5 for k = 0

7. barphix0,barphiy0,barphiz0: the steady perturbation velocities on the body pan-
els, φ̄x(0) = φx(0)/Q∞, φ̄y(0) = φy(0)/Q∞, φ̄z(0) = φz(0)/Q∞, from equations 16

8. baruc0,barvc0,barwc0: the steady total velocities on the body panels, ū(0) =
u(0)/Q∞, v̄(0) = v(0)/Q∞, w̄(0) = w(0)/Q∞, from equation 17

9. cp0: the steady pressure coefficient on the body panels, cp0 , from equation 20

10. Fx0,Fy0,Fz0: the steady aerodynamic loads per dynamic pressure on the body
panels, Fx(0), Fy(0), Fz(0), from equation 26

The function returns barUinf,barVinf,barWinf and Aphi,Bphi,Cphi directly to the
input function’s workspace so that they can be used in subsequent analyses. The vari-
ables barphix0,barphiy0,barphiz0, baruc0,barvc0,barwc0, cp0, Fx0,Fy0,Fz0 and
Mx0,My0,Mz0 are stored in the respective fields of the allbodies structured array. For
each of the bodies, the variables mu0, muw0, cp0, Fx0,Fy0,Fz0 and Mx0,My0,Mz0 are ex-
tracted, reshaped into 2m×n matrices and stored in the respective fields of the respective
element of the body structured array.

The NASATM84367 test case is an example of a purely steady aerodynamic analysis of
a wing at different Mach numbers and angles of attack. The input file is

steady_SDPM_NASATM84367.py

and the different flight conditions are entered as numpy arrays:

# Free stream Mach number. The last two test cases are highly transonic

Machdata=np.array([0.501, 0.499, 0.601, 0.601, 0.695, 0.695, 0.794,

0.793])

# Mean angle of attack in degrees

alpha0data=np.array([0.0, 2.0, -2.0, 2.0, -2.0, 2.0, 2.0,

-2.0])*np.pi/180.0

# Total number of runs

nruns=Machdata.size
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The experimental pressure measurements are loaded from the data file dataNASATM84367:

# Load experimental pressure data from .mat file

mat = scipy.io.loadmat("dataNASATM84367.mat")

The geometry input is carried out as described in section 6. Then, SDPMcalcs.steadysolve
is called for each of the nruns runs:

print(’Calculating flutter solutions for all experimental test cases’)

for irun in range (0,nruns):

print(’Simulating run ’+str(irun+1))

# Set Mach number of current run

Mach=Machdata[irun]

# Set mean angle of attack

alpha0=alpha0data[irun]

# Calculate subsonic compressibility factor

beta=np.sqrt(1-Mach**2)

# Calculate steady aerodynamic pressures and loads

body,allbodies,Aphi,Bphi,Cphi,barUinf,barVinf,barWinf=

SDPMcalcs.steadysolve(body,allbodies,cp_order,Mach,beta,alpha0,

beta0,0.0,0.0,0.0,install_dir)

fig, axx = plt.subplots(subplot_kw={"projection": "3d"})

# Plot SDPM pressure predictions

axx.plot_surface(body[’Xc0’][0][:,body[’n’][0]//2:body[’n’][0]],

body[’Yc0’][0][:,body[’n’][0]//2:body[’n’][0]],

body[’cp0’][0][:,body[’n’][0]//2:body[’n’][0]],

edgecolor=’royalblue’,alpha=0.1)

# Plot experimental pressure measurements

axx.scatter(mat[’x0data’],mat[’y0data’],mat[’cp0data’][:,irun],

marker=’o’,color=’r’)

axx.set_proj_type(’ortho’) # FOV = 0 deg

axx.set_zlim(-1,0.6)

axx.set_xlabel("$x/c_0$", labelpad=10)

axx.set_ylabel("$2y/b$", labelpad=10)

axx.set_zlabel("$c_p(0)$", labelpad=-1)

axx.view_init(26, -120)

plt.show()

# End for

All the lines after the call to SDPMcalcs.steadysolve plot the pressure distribution
around the half-wing, stored in body[’cp0’][0] against the x and y coordinates of the
panel control points, body[’Xc0’][0], body[’Yc0’][0]. Note that body[’Xc0’][0],
body[’Yc0’][0] describe a full-span wing geometry; the right half-wing is contained in
the columns of these arrays that have indices from n/2 to n− 1.
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(a) α0 = 2◦ (b) α0 = −2◦

Figure 6: Steady pressure distributions for the NASATM8436 test case at M∞ = 0.6

The pressure distributions calculated by the SDPM are compared to the experimental
pressure measurements for each run. Pressure tappings were only installed on the upper
surface of the wing, which is a suction surface for positive angles of attack and a pressure
surface for negative angles of attack. Figure 6 plots the predicted and measured pressure
distributions at M∞ = 0.6 for α0 = 2◦ and α0 = −2◦1. The experimental pressures are
denoted by the red circles, which lie on the suction side on figure 6(a) and on the pressure
side on figure 6(b). The SDPM predictions are quite accurate at this Mach number; at
M∞ = 0.8 there is a strong shock wave on the suction side that cannot be modelled by
the SDPM.

The aerodynamic loads per dynamic pressure (dimensions of length squared) are stored
in body[’Fx0’][0], body[’Fy0’][0], body[’Fz0’][0] as matrices with the same di-
mensions as body[’Xc0’][0], body[’Yc0’][0], body[’Zc0’][0]. To obtain the aero-
dynamic loads in force units type:

Fx0_dimensional=body[’Fx0’][0]*0.5*rhoinf*Qinf**2

Fy0_dimensional=body[’Fy0’][0]*0.5*rhoinf*Qinf**2

Fz0_dimensional=body[’Fz0’][0]*0.5*rhoinf*Qinf**2

where rhoinf is the free stream density, ρ∞, and Qinf the free stream airspeed, Q∞; both
must be defined before the calculation. To obtain aerodynamic load coefficients in the x,
y and z directions type:

CX0=body[’Fx0’][0]/body[’S’][0]

CY0=body[’Fy0’][0]/body[’S’][0]

CZ0=body[’Fz0’][0]/body[’S’][0]

The total lift and drag coefficients acting on the wing are obtained from:

CL=np.sum(CZ0)*np.cos(alpha0)-np.sum(CX0)*np.sin(alpha0)

CD=np.sum(CZ0)*np.sin(alpha0)+np.sum(CX0)*np.cos(alpha0)

1The figures in this document were plotted in Matlab and not Matplotlib.
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6.2 Unsteady aerodynamic analysis

Unsteady aerodynamic analyses are carried out after the steady analysis. The only re-
quirements are the definition of the motion kinematics of all the bodies and the input of a
value for the reduced frequency, k, of the motion. The motion can be rigid translation and
rotation around a given rotation centre or flexible and parallel to give mode shapes. Test
case NASATND344 is an example of the latter; a rectangular wing was placed in the wind
tunnel and forced to oscillate in bending around its first bending mode shape, with im-
posed amplitude and frequency. The test case input file, unsteady_SDPM_NASATND344.py,
includes

# Bending tip amplitude (m)

bendtip_amp=0.2*0.0254

# Bending phase (rad)

Phi_bend=0.0

where bendtip_amp is the bending oscillation amplitude at the wingtip and Phi_bend is
the phase angle of the oscillation, such that Phi_bend=0.0 means that the motion is a
pure cosine function of time. In the frequency domain, the displacement of the wingtip
in the z direction at frequency k is given by

bendtip_amp/2.0*np.exp(1j*Phi_bend)

The bending mode shape, Φz, is created on a structural grid with mFE chordwise and nFE

spanwise points,

# Choose number of modes to include in the flutter calculation

nmodes=1 # The wing was forced to oscillate in the first bending mode

# Set up structural modal grid

mFE=30 # Set desired number of chordwise points

nFE=30 # Set desired number of spanwise points

# Acquire mode shapes (only modeshapesz and its derivative modeshapesRx

# are non-zero)

xxplot,yyplot,modeshapesx,modeshapesy,modeshapesz,modeshapesRx,

modeshapesRy,modeshapesRz=modes_NASATND344(mFE,nFE)

such that Φz is 0 at the root and 1 at the tip. It is assumed that there is no torsion, so
that Φz is constant in the chordwise direction. As only bending was imposed, Φx = Φy =
Φψ = 0. Consequently,

Φφ = −∂Φz

∂y
, Φθ = −∂Φz

∂x

Since Φz is constant in the chordwise direction, Φθ = 0, so that only Φφ and Φz are
non-zero. Function modes_NASATND344 returns in mFEnFE × 1 arrays:

• xxplot,yyplot: The x and y coordinates of the structural grid.

• modeshapesx,modeshapesy,modeshapesz: The translation components of the mode
shape, Φx, Φy, Φz.
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• modeshapesRx,modeshapesRy,modeshapesRz: The rotation components of the mode
shape, Φφ, Φθ = 0, Φψ.

Function unsteady_SDPM_NASATND344.py interpolates the components of the mode
shape onto the SDPM grid, once have been acquired, using

# Interpolate mode shapes onto panel control points

body=FEmodes.SDPMmodeinterp(xxplot,yyplot,modeshapesx,modeshapesy,

modeshapesz,modeshapesRx,modeshapesRy,modeshapesRz,body)

Function FEmodes.SDPMmodeinterp takes the x and y cartesian coordinates of the panel
control points from body[’Xc0’][0], body[’Yc0’][0]. The interpolation is carried out
onto the mean surface (camber surface) of the right half-wing; it is then assigned to
both the upper and lower surfaces and mirrored across the centreline of the wing. The
interpolated mode shape components are 2mn× 1 arrays stored in struct array body:

• body[’Phi_xall’][0],body[’Phi_yall’][0],body[’Phi_zall’][0]: The inter-
polated translation components of the mode shape, Φ̃x, Φ̃y, Φ̃z.

• body[’Phi_phiall’][0],body[’Phi_thetaall’][0],body[’Phi_psiall’][0]: The
interpolated rotation components of the mode shape, Φ̃φ, Φ̃θ, Φ̃ψ.

The next step in unsteady_SDPM_NASATND344.py is to concatenate the mode shape com-
ponents for all the bodies:

# Assemble mode shapes for all bodies into global matrices

allbodies=SDPMcalcs.modeshape_assemble(body,allbodies,nmodes)

In the present case there is only one body so the only result of this operation is the copy-
ing of body[’Phi_xall’][0], body[’Phi_yall’][0], etc, into allbodies[’Phi_x’][0],
allbodies[’Phi_y’][0] etc.

For each of the experimental runs, the Mach number, reduced frequency, angle of
attack, subsonic compressibility factor and effective angle of attack at the wingtip are set:

# Set Mach number of current run

Mach=Machdata[irun]

# Set reduced frequency

k=kdata[irun]

# Set mean angle of attack

alpha0=alpha0data[irun]

# Calculate subsonic compressibility factor

beta=np.sqrt(1-Mach**2);

# Calculate effective angle of attack at the wingtip

alpha_h=2.0/c0*k*bendtip_amp

where irun is the index of the current run. Next, the steady aerodynamic calculation is
carried out
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# Calculate steady aerodynamic pressures and loads

body,allbodies,Aphi,Bphi,Cphi,barUinf,barVinf,barWinf=

SDPMcalcs.steadysolve(body,allbodies,cp_order,Mach,beta,alpha0,

beta0,0.0,0.0,0.0,install_dir)

and the steady pressure distribution is plotted and compared to experimental data. Then,
the unsteady aerodynamic analysis is carried out:

# Calculate the unsteady pressure coefficients

cp1,cp_0,cp_1,cp_2=SDPMcalcs.unsteadysolve_flex(body,allbodies,Aphi,

Bphi,Cphi,barUinf,barVinf,barWinf,k,c0,Mach,beta,cp_order,

install_dir)

Function SDPMcalcs.unsteadysolve_flex calculates the oscillatory pressure distribution
for flexible motion using the mode shapes stored in array body. The function first calcu-
lates the non-dimensional frequency Ω = 2kM∞/c0β and then the wake double strength
decay matrix Pe(k) of equation 7, before computing the unsteady aerodynamic influence
coefficient matrices using:

# Calculate unsteady influence coefficient matrices

Abarphi,Bbarphi,Cbarphi=unsteady_infcoef(body,allbodies,install_dir,

Omega,Mach,Aphi,Bphi,Cphi)

where Abarphi, Bbarphi, Cbarphi are the matrices Âφ(k), B̂φ(k), Ĉφ(k) appearing
in equations 9. Then, it evaluates the matrices K(k), Kx(k), Ky(k), Kz(k) in equa-
tions 9 to 10, followed by the matrices C̄0(k) and C̄1(k) in equation 19. Finally, the
function outputs the pressure derivative arrays cp1,cp_0,cp_1,cp_2, which have size
allbodies[’allpanels’]×nmodes and are given by

cp0(k) = cpφ(k) + cpθ(k) + cpψ(k)

cp1(k) = cpẋ(k) + cpẏ(k) + cpż(k) + cp
φ̇
(k) + cp

θ̇
(k) + cp

ψ̇
(k)

cp2(k) = cpẍ(k) + cpÿ(k) + cpz̈(k)

where cpφ(k), cpθ(k) etc. appear in equation 25. The function also outputs the total
pressure derivative array cp1, which has the same dimensions and is cp(k) and is given
by

cp0(k) + ikcp1(k) + (ik)2 cp2(k) (33)

Finally, unsteady_SDPM_NASATND344.py calculates cp(k) in equation 25 by multiplying
cp1 by the tip bending amplitude:

# Mulitply cp1 by tip bending amplitude and reshape to a matrix

cp1mat=bendtip_amp/2.0*np.exp(1j*Phi_bend)*np.reshape(cp1,

(2*body[’m’][0],body[’n’][0]),order=’C’)

The array cp1mat has dimensions 2m × n and is complex. It is the required oscillatory
pressure distribution acting on the panel control points due to the imposed bending mo-
tion. The test case input file also calculates the pressure jump across the surface, ∆cp(k).
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# Calculate pressure jump across the surface

Dcp1=np.flipud(cp1mat[0:m,:])-cp1mat[m:2*m,:]

The final step is to plot the real and imaginary parts of the unsteady pressure distribution
and to compare them to experimental data. The original reference gives this data only
for the M∞ = 0.24 cases. Figure 7 plots the real and imaginary parts of the pressure
distribution forM∞ = 24, α0 = 5◦ and compares them to the experimental measurements.
For all the Mach numbers, only the pressure jump distribution is given so this is what is
plotted by unsteady_SDPM_NASATND344.py. Note that there are strong shock waves in
the steady pressure distributions at M∞ = 0.9 and M∞ = 0.7 (α0 = 5◦ case), which also
have an effect on the unsteady pressure jump distributions.

(a) ℜ(cp(k)) (b) ℑ(cp(k))

Figure 7: Real and imaginary parts of the pressure distribution for the NASATND344
test case at M∞ = 24, α0 = 5◦

6.3 Calculation of aerodynamic stability derivatives

Test case NACARML5 calculates the lateral aerodynamic stability derivatives of a Delta, a
straight, and a swept wing and compares them to experimentally determined values given
in [10, 11, 12, 13]. Each of the wings has its own input file, unsteady_SDPM_delta.py,
unsteady_SDPM_straight.py and unsteady_SDPM_swept.py. The analysis starts as
usual, with the input of the flight conditions, the description of the wing geometry and
the generation of the SDPM grid. Since the lateral stability derivatives are of interest, the
straight and swept wings feature wingtips that block the lateral flow through the wing.
The SDPM grid is created as follows:

# Calculate vertices of wing panels

body=SDPMgeometry_trap_fun(body,ibody,m,mw,nhalf,mirroredwing,linchord,

linspan,trap,name,dir_tau,rollpitchyaw,rollpitchyaw_cent,lexyz,nmin)

# Calculate vertices of wingtip panels

body=makewingtips(body,ibody,mirroredwing)
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Function makewingtips adds one or two new elements in structured array body, contain-
ing the SDPM grid coordinates of left and right wingtips attached to body[ibody]. The
number of wingtips depends on the value of mirroredwing; if mirroredwing=-1 a left
wingtip is added, if mirroredwing=1 a right wingtip is added and if if mirroredwing=2
both left and right wingtips are added. Figure 8 plots an example of a left wingtip added
to the straight wing. Wingtip objects are identical in structure to all other body objects
but they do not shed a wake, such that mw=0. The wingtip vertex matrices Xp0, Yp0, Zp0
have 2m+ 1 lines, where m is the number of chordwise panels in the parent wing, and 3
columns:

• : Left wingtip: lower surface, mid surface and upper surface

• Right wingtip: upper surface, mid surface and lower surface

Consequently, wingtips have 2m chordwise and 2 heightwise panels. Aside from not
shedding wakes, they are treated like all other elements of the body struct array.

Figure 8: Wing and wingtip panels

The NACARML5 test cases calculate all the aerodynamic stability derivatives at a single
reduced frequency, kb = ωb/2Q∞ = 0.23, where b/2 is the half-span, and a range of steady
pitch angles. In order to simulate as closely as possible the experiments, the free stream
angles of attack and sideslip are set to zero but the wing itself is rotated to the desired
pitch angle, around the quarter of the mean aerodynamic chord. The rotation is carried
by calling SDPMgeometry_trap_fun after setting

# Recreate the body at the current pitch angle value

# Define roll, pitch and yaw angles
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rollpitchyaw=np.array([0, pitchdata[irun], 0])

# Define roll, pitch and yaw centre (x,y,z position of rotation centre)

rollpitchyaw_cent=np.array([xf0, yf0, zf0])

thus regenerating the SDPM grid at the current pitch angle, pitchdata[irun]. Then,
the wingtips are recalculated to fit the new wing grid and SDPMcalcs.steadysolve is
called to solve the steady flow at the current pitch angle. Recall that SDPMflut calculates
forces and moments in Newtons per Pascal and Newton meters per Pascal respectively.
These are converted to steady load coefficients by

# Calculate steady aerodynamic load coefficients on the panels

CD[irun]=np.sum(body[’Fx0’][0])/Sref

CY[irun]=np.sum(body[’Fy0’][0])/Sref

CL[irun]=np.sum(body[’Fz0’][0])/Sref

Cl[irun]=np.sum(body[’Mx0’][0])/Sref/bref

Cm[irun]=np.sum(body[’My0’][0])/Sref/cref

Cn[irun]=np.sum(body[’Mz0’][0])/Sref/bref

where Sref is the reference area, bref the reference span, cref the reference chord, CD
is the drag coefficient, CY the sideforce coefficient, CL the lift coefficient, Cl the rolling
moment coefficient, Cm the pitching moment coefficient and Cn the yawing moment coef-
ficient.

For compatibility with the rest of the code, kb is converted to the reduced frequency
based on the half-chord

# Convert reduced frequency based on half-span

# to reduced frequency based on half-chord

k=kvec[ik]/bhalf*c0/2.0

The derivatives of the pressure with respect to the degrees of freedom are evaluated using
equations 64 to 78. Both the pressure derivatives and the aerodynamic stability derivatives
are calculated by function SDPMcalcs.aerostabderiv:

# Calculate aerodynamic stability derivatives

stabder=SDPMcalcs.aerostabderiv(body,allbodies,Aphi,Bphi,Cphi,barUinf,

barVinf,barWinf,k,c0,Mach,beta,cp_order,xf0,yf0,zf0,Sref,bref,

cref,install_dir)

The aerodynamic stability derivatives are stored in structure array stabder, of type
tp_stabder. This array contains 21 longitudinal derivatives, from CXu to Cmqdot, and
24 lateral derivatives, from CYv to Cnrdot. Given the definitions of v̄(k) and ¯̇v(k) in
appendix B, it can be shown that

CYβ = −CYv , CYβ̇ = −CYv̇ , Clβ = −Clv , Clβ̇ = −Clv̇ , Cnβ = −Cnv , Cnβ̇ = −Cnv̇

As an example, figure 9 plots the variation of the roll and yaw aerodynamic stability
derivatives with respect to r̄ and β with steady pitch angle for the straight wing. The
agreement between the SDPM predictions and experimental data is very good up to pitch
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Figure 9: Variation of aerodynamic stability derivatives with steady pitch angle for the
straight wing

angle values of around 8◦. At higher angles, viscous phenomena become very important
and the inviscid SDPM cannot predict them. For compatibility with the experimental
data, only the real parts of the aerodynamic derivatives are plotted; the imaginary parts
are very small compared to the real parts at this value of the reduced frequency.

The measured aerodynamic stability derivatives with respect to accelerations ṙ and
β̇ are quite flat at low pitch angles; it is only at the higher pitch angles that significant
values are observed. The SDPM predicts very small values for these derivatives at all
pitch angles. Finally, it should be noted that the sideslip derivatives predicted by the
SDPM are less accurate than the roll and yaw derivatives.

6.4 Flutter analysis for flexible wings

The contents of an input file for flutter analysis are fairly similar to those of an input file
for unsteady analysis. There are three flutter cases of flexible structures in the current
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SDPM distribution:

• flutter_SDPM_AGARD.py

• flutter_SDPM_NASATMX72799.py

• flutter_SDPM_Ttail.py

The input files starts as usual but the flutsol package must also be imported. The
definition of flight conditions and the input of the geometry are carried out as usual. The
structural model is loaded from a .mat file, whose name is stored in fname, e.g.

# File name of Matlab mat file that contains the structural model

fname=’modes_AGARD_Q4EPM.mat’

# Choose number of modes to include in the flutter calculation

nmodes=5 # Cannot exceed number of modes in FE model

zeta0=0.02*np.ones(nmodes) # Structural damping ratios

# Parameter to determine if the structural model concerns a half wing or a

# full wing.

halfwing=1 # halfwing=1: half-wing. halfwing=0: full wing

File modes_AGARD_Q4EPM.mat contains the nmodes×nmodes arrays Mmodal and Kmodal,
the mFE*nFE× coordinate arrays xxplot, xxplot, and the mFE*nFE×nmodes mode shape
arrays modeshapesx, modeshapesy, modeshapesz, modeshapesRx, modeshapesRy,
modeshapesRz. The file is read using:

# Acquire structural matrices and mode shapes

A, C, E, wn, xxplot, yyplot, zzplot, modeshapesx, modeshapesy, modeshapesz,

modeshapesRx, modeshapesRy, modeshapesRz=

FEmodes.FE_matrices(fname,zeta0,nmodes)

Function FEmodes.FE_matrices also truncates the modal matrices and mode shapes to
the first nmodes modes, sets the off-diagonal terms of the modal matrices to exactly zero2,
calculates the damping matrix given the wind-off structural damping ratios zeta0, and
calculates the first nmodes natural frequencies, outputting them to array wn.

The user must also define the reduced frequencies and airspeeds at which to carry out
the flutter analysis, e.g.:

# Select reduced frequency values

kvec=np.array([0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0, 2.0])

# Select airspeed range in m/s

Uv=np.linspace(100,400,num=101)

The values in kvec and Uv must be informed by the physics of the problem. The minimum
value in k = 0.001 is probably adequate for most applications but the maximum value
depends on the highest wind-off natural frequency, lowest airspeed and characteristic
chord length. In other words:

2The modal matrices obtained from finite element packages are not always exactly diagonal, the off-
diagonal terms may be non-zero but very small.
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kmax=np.max(wn)*c0/2.0/np.min(Uv)

This calculation is not carried out by SDPMflut because the user may wish to select an
even higher maximum value for k. The reduced frequency values must be denser towards
the lowest range; flutter in aircraft occurs generally at k < 1 and often at k < 0.4. The
airspeed range in Uv must be selected by trial and error, unless the flutter airspeed is
known or suspected. For a complete aircraft, the entire speed range in the flight envelope
can be assigned to Uv.

The only other difference between a flutter analysis input file and an unsteady analysis
input file is the calling of the flutter solution function, e.g.:

Uflut,freqflut,kflut,dynpressflut,omega,zeta=

flutsol.flutsolve_flex(body,allbodies,kvec,Uv,

nmodes,Aphi,Bphi,Cphi,barUinf,barVinf,barWinf,c0,

Mach,beta,cp_order,A,C,E,rho,wn,halfwing,install_dir)

Function flutsol.flutsolve_flex starts with calculating the steady generalized aero-
dynamic load vector, Q0(0), given by

Q0(0) = −
(

Φ̃T
xFx(0) + Φ̃T

yFy(0) + Φ̃T
z Fz(0)

)

where Fx(0), Fy(0), Fz(0) are defined in equation 26. If the structural model is a half-
wing, it will divide Q0(0) by two so that only the aerodynamic loads from one half-wing
will be included in the aeroelastic equation. Currently, Q0(0) is not used in any of the
test cases included with SDPMflut but it could be used to carry out steady aeroelastic
analysis by solving the steady version of equation 28

(

E − 1

2
ρ∞Q

2
FQ0(0)

)

q(0) =
1

2
ρ∞Q

2
FQs(0)

for the modal displacements q(0) induced by the steady aerodynamic loads. The proce-
dure can also be iterative, deforming the SDPM geometry by Φ̃xq(0), Φ̃yq(0), Φ̃zq(0) and
then re-calculating all the steady and unsteady aerodynamic influence coefficients and the
generalized aerodynamic load vector and matrices.

The next step in flutsol.flutsolve_flex is to call

# Calculate the unsteady pressure coefficients

cp1,cp_0,cp_1,cp_2=SDPMcalcs.unsteadysolve_flex(body,allbodies,

Aphi,Bphi,Cphi,barUinf,barVinf,barWinf,k,c0,Mach,beta,

cp_order,install_dir)

to obtain the unsteady pressures and to calculate Q0(k), Q1(k), Q2(k) using equations 29
and 30, for all specified values of the reduced frequency k. Once the loop for k has
finished executing, if halfwing=1, all generalized aerodynamic load matrices are divided
by 2. Then, the determinant iteration procedure of equation 31 is applied to evaluate the
wind-on natural frequencies and damping ratios at all selected airspeeds:
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# Calculate eigenvalues using determinant iteration

eigvals=detiterfun(A,C,E,Q_0,Q_1,Q_2,kvec,Uv,c0/2,rho,wn)

# Calculate natural frequencies and damping ratios

omega=np.absolute(eigvals)

zeta=-eigvals.real/np.absolute(eigvals)

where omega is a nmodes×len(Uv) array storing the natural frequencies, ωn = |λ|, and
zeta is an array of the same size storing the damping ratios,

ζn =
−ℜ(λ)
|λ|

If any of the damping ratios become negative within the airspeed range, a function will
be called to pinpoint exactly the flutter condition by solving the determinant problem of
equation 32:

# Calculate exact flutter velocity and frequency

Uflut,freqflut=flutfind(A,C,E,Q_0,Q_1,Q_2,kvec,Uini,c0/2.0,rho,wini)

# Calculate flutter reduced frequency

kflut=freqflut*c0/2.0/Uflut

# Calculate flutter dynamic pressure

dynpressflut=1/2.0*rho*Uflut**2.0

where Uini and wini are initial guesses for the flutter velocity and frequency obtained
from the crossing of zeta to negative values. The converged values for the flutter speed
and frequency are stored in Uflut,freqflut respectively. The function also calculates
the reduced flutter frequency, kflut, and the flutter dynamic pressure, dynpressflut
before returning.
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Figure 10: Variation of flutter speed index and flutter frequency ratio with Mach number
for the NASATMX72799 test case with heavy winglets
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Finally, the input file calculates the flutter speed index,

Q∗

F =
QF

(c0/2)ωα
√
µ

where ωα is usually the first wind-off torsional natural frequency and µ is the mass ratio,
i.e. the ratio of a mass of air enclosing a body to the mass of the body. Then, it plots the
flutter results for all the runs. For example, figure 10 plots the variation of flutter speed
index and flutter frequency ratio with Mach number for the NASATMX72799 test case
with heavy winglets.

(a) T-tail fin fairing and horizontal tailplanes (b) Exploded view

Figure 11: SDPM grids for the fin fairing and horizontal taiplanes

The T_tail case is particular in that there are many bodies in the flow and, more
importantly, the horizontal tailplane is in contact with the fin fairing. When using panel
methods, bodies that are in contact but do not share exactly the same contact vertices
can cause significant numerical instabilities. The solution adopted in this test case is to
create the fin fairing SDPM grid after creating that of the two tailplanes, such that the
former shares the root vertices of the latter. As the angle of incidence of the horizontal
tailplane varies between runs, the geometry is finalized inside the loop for irun; only the
SDPM grid of the vertical fin is created before this loop. Figure11 plots the SDPM grids
for the horizontal tailplanes and fin fairing only, as well as an exploded view of these
elements. It can be seen that the fin fairing is split into two bodies, the upper and lower
fairings, so that its grid can be accommodated into 2D arrays. Each half of the fairing
has 2m chordwise panels on the the right side and another 2m on the left, while the
horizontal tailplanes have m chordwise panels on the upper surface and m on the lower.
The right half of the upper fairing shares m vertices with the upper surface of the right
tailplane and the left half of the upper fairing shares m vertices with the upper surface of
the left tailplane. Similarly, lower fairing shares vertices with the lower halves of the two
tailplanes.

The other specificity of the T_tail test case is that it uses a dedicated mode interpo-
lation function, instead of the one found in Common, that is:
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# Interpolate mode shapes

body=VanZylTtail.ttailmodesinterp(body,z_root_tip,nmodes,xxplot,yyplot,

zzplot,modeshapesx,modeshapesy,modeshapesz,modeshapesRx,

modeshapesRy,modeshapesRz)

There are two reasons for this specificity:

• The mode shapes are beam modes; when interpolating them onto surfaces there is
quite a lot of extrapolation. This means that radial basis function interpolation is
necessary to avoid NaNs when using SciPy.

• Different parts of the mode shapes are used when interpolating on different bodies;
the nodes of the mode shape lying on y = 0 are used for the fin and fin fairing while
the nodes lying on y 6= 0 are used for the tailplanes.
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(b) Steady tailplane lift at flutter

Figure 12: Variation of flutter speed with tailplane incidence and steady tailplane lift at
flutter for the Van Zyl T-tail test case

The rest of the flutter_SDPM_Ttail.py input file is similar to the AGARD and NASA
TMX72799 input files, except that the experimental flutter frequencies are not given in
the original references. Figure 12 plots the variation of the dimensional flutter speed with
tailplane incidence, as well as its variation with steady tailplane lift coefficient. Note that
the CSIR data plotted in figure 12(b) are not experimental; they were obtained using a
modelling method by [20].

6.5 Flutter analysis for pitching and plunging wings

The three test cases in the PAPA folder are rigid rectangular wings of exactly the same
dimensions but with different airfoil sections, suspended from the same Pitching and
Plunging Apparatus. The input files are identical except for the wind tunnel test condi-
tions, airfoil sections and mass/stiffness characteristics. The difference with the flexible
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flutter test cases discussed in section 6.4 is that dedicated functions are used for calcu-
lating the unsteady aerodynamic pressures and flutter solutions. The normalized upwash
due to the motion is given by a simplified version of equations 22,

ūm(k) = −q(k)
Q∞

(zc − zf)

v̄m(k) = 0 (34)

w̄m(k) = θ(k) +
q(k)

Q∞

(xc − xf )−
w(k)

Q∞

where all the terms due to longitudinal, lateral, roll and yaw motion have been removed
and xf , yf , zf is the position of the pitch axis. Consequently, the unsteady pressure is
given by a shorter version of equations 24, namely

cp(k) = cpw(k)w(k) + cpθ(k)θ(k) + cpq(k)q(k) + ikcpẇ(k)w(k)

+ikcpq̇(k)q(k)

The pitch and plunge aeroelastic equations [23] are written in terms of the pitch dis-
placement, α(k) = θ(k), and plunge displacement h(k), such that q(k) = ikα(k) and
w(k) = ikh(k). Substituting into the equation for the oscillatory pressure yields

cp(k) = ikcp
ḣ
(k)h(k) + cpα(k)α(k) + ikcpα̇(k)α(k) + (ik)2cp

ḧ
(k)h(k)

+(ik)2cpα̈(k)α(k) (35)

where expressions for the pressure derivatives cp
ḣ
(k), cpα̇(k), etc. are given in [4]. The

aerodynamic load and moment derivatives around the pitch axis are given by

Fzα(k) = −cpα(k) ◦ s ◦ nz

Myα(k) = −Fzα(k) ◦ (xc − xf )

and similarly for the derivatives with respect to ḣ, α̇, ḧ, α̈. Consequently, the generalized
aerodynamic stiffness, damping and mass matrices are given by

Q0(k0) =

(

0 −
∑N

i=1 Fzα(k0)

0
∑N

i=1Myα(k0)

)

, Q1(k0) =

(

−
∑N

i=1 Fzḣ(k0) −
∑N

i=1 Fzα̇(k0)
∑N

i=1My
ḣ
(k0)

∑N
i=1Myα̇(k0)

)

Q2(k0) =

(

−
∑N

i=1 Fzḧ(k0) −
∑N

i=1 Fzα̈(k0)
∑N

i=1My
ḧ
(k0)

∑N
i=1Myα̈(k0)

)

(36)

noting that the lift is defined as positive downwards in Theodorsen theory. Similarly, the
steady generalized aerodynamic load vector becomes

Qs(k0) =

(

−∑N
i=1 Fz(0)

∑N
i=1My(0)

)

(37)

where

Fz(0) = −cp(0) ◦ s ◦ nz

My(0) = −Fz(0) ◦ (xc − xf )

The PAPA input files
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• flutter_SDPM_BSCW.py

• flutter_SDPM_NACA0012.py

• flutter_SDPM_NACA64A010.py

do not import or interpolate any mode shapes since the motion is described by the pitch
and plunge degrees of freedom. The structural mass and stiffness matrices are calculated
from

A =

(

mh Shα
Shα Iα

)

, E =

(

Kh 0
0 Kα

)

where mh is the mass of the wing, Shα its static imbalance around the pitch axis, Iα its
moment of inertia around the pitch axis, Kh the stiffness of the plunge spring and Kα that
of the pitch spring. The values of all these parameters are given in the original references,
noting that Shα = 0. The rest of the PAPA input files are identical to those of the flexible
test cases, except for

# Calculate flutter solution for pitch-plunge motion

Uflut,freqflut,kflut,dynpressflut,omega,zeta=

flutsol.flutsolve_pitchplunge(body,allbodies,kvec,Uv,nmodes,

Aphi,Bphi,Cphi,barUinf,barVinf,barWinf,c0,Mach,beta,cp_order,

A,C,E,rho,wn,halfwing,xf0,yf0,zf0,install_dir)

Function flutsol.flutsolve_pitchplunge calculates the generalized aerodynamic load
vector and matrices using equations 35 to 37. As an example, figure 13 plots the flutter
speed index and flutter frequency ratio variation with Mach number for the NACA0012
test case.
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Figure 13: Variation of flutter speed index and flutter frequency ratio with Mach number
for the NACA0012 test case
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7 Summary

The SDPMflut package is a collection of functions for calculating the steady and unsteady
aerodynamic loads acting on exact wing geometries and for calculating flutter solutions, if
a structural model is given. It does not create any structural models, with the exception
of the pitch and plunge test cases; modal models must be imported from a .mat file that
has been created elsewhere. The package includes functions for creating SDPM grids for
wing geometries but not for fuselages, as yet. Future versions will also include fuselage
grid generation functions. The user can of course choose to use their own SDPM grids
Xp0, Yp0, Zp0, if they have created them elsewhere. The only constraint is that the grid
coordinates must be arranged in 2D arrays, such that there are m chordwise panels on
the lower and upper surfaces for a total of 2m chordwise panels, the first and last rows
are the lower and upper trailing edges, respectively, while the first and last columns are
the wingtips. Then, the user can employ the functions in SDPMflut to calculate the
coordinates of the control points, the components of the normal and tangential vectors,
the panel areas etc., and place everything in the body array.

When using SDPMflut, the assumptions behind the source and doublet panel method
must always be kept in mind:

• The flow is inviscid, irrotational and isentropic

• All deformations and displacements are small

• The flow remains attached to the surface and separated smoothly at the trailing
edge

• There are no shock waves on the surface

Some of the test cases included in the package feature transonic flow with shocks
on the surface; the pressure distribution around the surface for such cases cannot be
modelled accurate by the SDPM. Consequently, any flutter solutions will ignore the effect
of the shock waves and will fail to predict the transonic flutter dip. Future versions
will include functions to correct the unsteady pressure distributions using higher fidelity
steady results [6].

All drag estimates obtained from SDPMflut ignore viscous drag contributions. The
flat plate analogy can be used to obtain an empirical estimate of steady skin friction
drag, see for example [3]. The required wetted area of all the bodies in the flow can be
calculated conveniently from the sums of the panel area fields, s0, of each element of the
body structured array.
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A Fourier transform of nonlinear pressure equation

In applying the Fourier transform to equation 2, all the mulitplications in the time domain
become convolutions in the frequency domain. The Fourier transform can be written as

cp(ω) = δ(ω)− u(ω) ∗ u(ω) + v(ω) ∗ v(ω) + w(ω) ∗ w(ω)
Q2

∞

+
M2

∞

Q2
∞

φx(ω) ∗ φx(ω)

− 2

Q2
∞

iωφ(ω) +
M2

∞

Q4
∞

(iωφ(ω)) ∗ (iωφ(ω)) + 2M2
∞

Q3
∞

φx(ω) ∗ (iωφ(ω)) (38)

where δ(ω) is the Kronecker Delta function and the operator ∗ denotes convolution. For
sinusoidal motion at frequency ω0, the various terms in equation 38 can be written as
vectors with three elements, their frequency components at −ω0, 0 and ω0, such that

φ(ω) = (φ∗(ω0), φ(0), φ(ω0))

iωφ(ω) = (−iω0φ
∗(ω0), 0, iω0φ(ω0))

φx(ω) = (φ∗

x(ω0), φx(0), φx(ω0))

φy(ω) =
(

φ∗

y(ω0), φy(0), φy(ω0)
)

φz(ω) = (φ∗

z(ω0), φz(0), φz(ω0))

u(ω) = (u∗m(ω0) + φ∗

x(ω0), U∞ + φx(0), um(ω0) + φx(ω0))

v(ω) =
(

v∗m(ω0) + φ∗

y(ω0), V∞ + φy(0), vm(ω0) + φy(ω0)
)

w(ω) = (w∗

m(ω0) + φ∗

z(ω0), W∞ + φz(0), wm(ω0) + φz(ω0))

where the superscript ∗ denotes the complex conjugate. Then,

φx(ω) ∗ φx(ω) =













φ∗

x(ω0)
2

2φ∗

x(ω0)φx(0)
2φ∗

x(ω0)φx(ω0) + φx(0)
2

2φx(0)φx(ω0)
φx(ω0)

2













(iωφ(ω)) ∗ (iωφ(ω)) =













(−iω0φ
∗(ω0))

2

0
2(−iω0φ

∗(ω0))(iω0φ(ω0))
0

(iω0φ(ω0))
2













φx(ω) ∗ (iωφ(ω)) =













−φ∗

x(ω0)iω0φ
∗(ω0)

−φx(0)iω0φ
∗(ω0)

φ∗

x(ω0)iω0φ(ω0)− φx(ω0)iω0φ
∗(ω0)

φx(0)iω0φ(ω0)
φx(ω0)iω0φ(ω0)













u(ω) ∗ u(ω) =













u∗(ω0)
2

2u∗(ω0)u(0)
2u∗(ω0)u(ω0) + u(0)2

2u(ω0)u(0)
u(ω0)

2
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and similar expressions for u(ω) ∗ u(ω), v(ω) ∗ v(ω). In all these convolutions, the first
element of the resulting vector corresponds to frequency component ω = −2ω0, the second
to ω = −ω0, the third to ω = 0, the fourth to ω = ω0 and the fifth the ω = 2ω0.
Consequently, the pressure coefficient at ω = 0 is calculated by substituting the third
element of each of the convolution vector into equation 38, i.e.

cp(0) = 1− 2u∗(ω0)u(ω0) + u(0)2

Q2
∞

− 2v∗(ω0)v(ω0) + v(0)2

Q2
∞

− 2w∗(ω0)w(ω0) + w(0)2

Q2
∞

+
M2

∞

Q2
∞

(

2φ∗

x(ω0)φx(ω0) + φx(0)
2
)

+
2M2

∞

Q4
∞

ω2
0φ

∗(ω0)φ(ω0)

+
2M2

∞

Q3
∞

iω0 (φ
∗

x(ω0)φ(ω0)− φx(ω0)φ
∗(ω0)) (39)

The pressure coefficient at the oscillation frequency, ω = ω0, is obtained when using the
fourth element of each of the convolution vectors, such that

cp(ω0) = −2
u(ω0)u(0) + v(ω0)v(0) + w(ω0)w(0)

Q2
∞

+
2M2

∞

Q2
∞

φx(0)φx(ω0)

− 2

Q2
∞

iω0φ(ω0) +
2M2

∞

Q3
∞

iω0φx(0)φ(ω0) (40)

Finally, the pressure coefficient at twice the oscillation frequency, ω = 2ω0, is obtained
when using the fifth element of each convolution vector,

cp(2ω0) = −u(ω0)
2 + v(ω0)

2 + w(ω0)
2

Q2
∞

+
M2

∞

Q2
∞

φx(ω0)
2

−M
2
∞

Q4
∞

ω2
0φ(ω0)

2 +
2M2

∞

Q3
∞

iω0φx(ω0)φ(ω0) (41)

Equations 39 and 41 are nonlinear in the oscillatory potential and velocities and will not
be used in the present work. In particular, equation 39 gives the zero frequency component
of an oscillatory pressure, in other words the mean pressure. The steady pressure in the
absence of motion is obtained by setting ω = 0 directly in equation 38, such that

cp0 = 1− u(0)2 + v(0)2 + w(0)2

Q2
∞

+
M2

∞

Q2
∞

φx(0)
2 (42)

Equation 40 for cp(ω0) is linear in the oscillatory potential and velocities and can
therefore be used for linear flutter analysis. Substituting for ω0 from

ω0 =
2Q∞k

c0

leads to

cp(k) = −2
u(k)u(0) + v(k)v(0) + w(k)w(0)

Q2
∞

+
2M2

∞

Q2
∞

φx(0)φx(k)

− 4ik

c0Q∞

φ(k) +
4ikM2

∞

c0Q2
∞

φx(0)φ(k)
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Writing out this latest expression for all the control points of all the panels on the surface
leads to the vector expression

cp(k) = −2
u(k) ◦ u(0) + v(k) ◦ v(0) +w(k) ◦w(0)

Q2
∞

+
2M2

∞

Q2
∞

φx(0) ◦ φx(k)

− 4ik

c0Q∞

φ(k) +
4ikM2

∞

c0Q2
∞

φx(0) ◦ φ(k) (43)

We can also define the normalized potential and velocities φ̄(k) = φ(k)/Q∞, ū(k) =
u(k)/Q∞, v̄(k) = v(k)/Q∞, w̄(k) = w(k)/Q∞, ūm(k) = um(k)/Q∞, v̄m(k) = vm(k)/Q∞,
w̄m(k) = wm(k)/Q∞, φ̄x(k) = φx(k)/Q∞, φ̄y(k) = φy(k)/Q∞, φ̄z(k) = φz(k)/Q∞,
Ū∞ = U∞/Q∞, V̄∞ = V∞/Q∞, W̄∞ =W∞/Q∞, such that

cp(k) = −2 (ū(k) ◦ ū(0) + v̄(k) ◦ v̄(0) + w̄(k) ◦ w̄(0)) + 2M2
∞
φ̄x(0) ◦ φ̄x(k)

−4ik

c0
φ̄(k) +

4ikM2
∞

c0
φ̄x(0) ◦ φ̄(k) (44)

In order to proceed further, we note that the normalized versions of equations 9, 10 and 11
become

µ̄n(k) = −
(

1

β
ūm(k) ◦ nξ + v̄m(k) ◦ nη + w̄m(k) ◦ nζ

)

(45)

φ̄(k) = −K(k)µ̄n(k) (46)

φ̄x(k) = Kx(k)µ̄n(k), φ̄y(k) = Ky(k)µ̄n(k), φ̄z(k) = Kz(k)µ̄n(k) (47)

ū(k) = ūm(k) + φ̄x(k), v̄(k) = v̄m(k) + φ̄y(k), w̄(k) = w̄m(k) + φ̄z(k) (48)

Let us treat the terms in equation 44 one by one. Substituting from expressions 45 to 48,
the term ū(k) ◦ ū(0) becomes

ū(k) ◦ ū(0) = (ūm(k) + φ̄x(k)) ◦ ū(0) = (ūm(k) +Kx(k)µ̄n(k)) ◦ ū(0)

= ūm(k) ◦ ū(0)−
(

Kx(k)

(

1

β
ūm(k) ◦ nξ + v̄m(k) ◦ nη + w̄m(k) ◦ nζ

))

◦ ū(0)

= ūm(k) ◦ ū(0)−
1

β
Kx(k) ◦ ū(0)(ūm(k) ◦ nξ)−Kx(k) ◦ ū(0)(v̄m(k) ◦ nη)

−Kx(k) ◦ ū(0)(w̄m(k) ◦ nζ) (49)

Similarly,

v̄(k) ◦ v̄(0) = v̄m(k) ◦ v̄(0)−
1

β
Ky(k) ◦ v̄(0)(ūm(k) ◦ nξ)−Ky(k) ◦ v̄(0)(v̄m(k) ◦ nη)

−Ky(k) ◦ v̄(0)(w̄m(k) ◦ nζ) (50)

w̄(k) ◦ w̄(0) = w̄m(k) ◦ w̄(0)− 1

β
Kz(k) ◦ w̄(0)(ūm(k) ◦ nξ)−Kz(k) ◦ w̄(0)(v̄m(k) ◦ nη)

−Kz(k) ◦ w̄(0)(w̄m(k) ◦ nζ) (51)

46



Furthermore,

φ̄x(0) ◦ φ̄x(k) = φ̄x(0) ◦ (Kx(k)µ̄n(k))

= −Kx(k) ◦ φ̄x(0)

(

1

β
ūm(k) ◦ nξ + v̄m(k) ◦ nη + w̄m(k) ◦ nζ

)

= − 1

β
Kx(k) ◦ φ̄x(0)(ūm(k) ◦ nξ)−Kx(k) ◦ φ̄x(0)(v̄m(k) ◦nη)

−Kx(k) ◦ φ̄x(0)(w̄m(k) ◦ nζ) (52)

while

φ̄(k) = −K(k)µ̄n(k)

= K(k)

(

1

β
ūm(k) ◦ nξ + v̄m(k) ◦ nη + w̄m(k) ◦ nζ

)

=
1

β
K(k)(ūm(k) ◦ nξ) +K(k)(v̄m(k) ◦ nη)

+K(k)(w̄m(k) ◦ nζ) (53)

and, finally,

φ̄x(0) ◦ φ̄(k) = φ̄x(0) ◦ (K(k)µ̄n(k))

= K(k) ◦ φ̄x(0)

(

1

β
ūm(k) ◦ nξ + v̄m(k) ◦ nη + w̄m(k) ◦ nζ

)

=
1

β
K(k) ◦ φ̄x(0)(ūm(k) ◦ nξ) +K(k) ◦ φ̄x(0)(v̄m(k) ◦ nη)

+K(k) ◦ φ̄x(0)(w̄m(k) ◦ nζ) (54)

Substituting equations 49 to 54 into equation 44 leads to

cp(k) = −2ūm(k) ◦ ū(0) +
2

β
Kx(k) ◦ ū(0)(ūm(k) ◦ nξ) + 2Kx(k) ◦ ū(0)(v̄m(k) ◦ nη)

+2Kx(k) ◦ ū(0)(w̄m(k) ◦nζ)− 2v̄m(k) ◦ v̄(0) +
2

β
Ky(k) ◦ v̄(0)(ūm(k) ◦ nξ)

+2Ky(k) ◦ v̄(0)(v̄m(k) ◦ nη) + 2Ky(k) ◦ v̄(0)(w̄m(k) ◦ nζ)− 2w̄m(k) ◦ w̄(0)

+
2

β
Kz(k) ◦ w̄(0)(ūm(k) ◦ nξ) + 2Kz(k) ◦ w̄(0)(v̄m(k) ◦ nη)

+2Kz(k) ◦ w̄(0)(w̄m(k) ◦ nζ)−
2M2

∞

β
Kx(k) ◦ φ̄x(0)(ūm(k) ◦ nξ)

−2M2
∞
Kx(k) ◦ φ̄x(0)(v̄m(k) ◦ nη)− 2M2

∞
Kx(k) ◦ φ̄x(0)(w̄m(k) ◦ nζ)

− 4ik

c0β
K(k)(ūm(k) ◦ nξ)−

4ik

c0
K(k)(v̄m(k) ◦ nη)−

4ik

c0
K(k)(w̄m(k) ◦ nζ)

+
4ikM2

∞

c0β
K(k) ◦ φ̄x(0)(ūm(k) ◦ nξ) +

4ikM2
∞

c0
K(k) ◦ φ̄x(0)(v̄m(k) ◦ nη)

+
4ikM2

∞

c0
K(k) ◦ φ̄x(0)(w̄m(k) ◦ nζ)
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This latest expression can be tidied up by grouping the terms in (ūm(k)◦nξ), (v̄m(k)◦nη)
and (w̄m(k) ◦ nζ) with the help of the coefficients

C̄0(k) = −2Kx(k) ◦ ū(0)− 2Ky(k) ◦ v̄(0)− 2Kz(k) ◦ w̄(0) + 2M2
∞
Kx(k) ◦ φ̄x(0)

C̄1(k) = 2K(k)− 2M2
∞
K(k) ◦ φ̄x(0) (55)

Consequently, the final expression for the oscillatory pressure coefficient on the surface
becomes

cp(k) = − 1

β
C̄0(k)(nξ ◦ ūm(k))− 2ū(0) ◦ ūm(k)− C̄0(k)(nη ◦ v̄m(k))− 2v̄(0) ◦ v̄m(k)

−C̄0(k)(nζ ◦ w̄m(k))− 2w̄(0) ◦ w̄m(k)−
2ik

c0β
C̄1(k)(nξ ◦ ūm(k))

−2ik

c0
C̄1(k)(nη ◦ v̄m(k))−

2ik

c0
C̄1(k)(nζ ◦ w̄m(k)) (56)

A.1 Linearized pressure on the surface

The first order oscillatory pressure equation is obtained by neglecting all nonlinear terms
in equation 2, such that

cp(ω) = −2φx(ω)

Q∞

− 2

Q2
∞

iωφ(ω)

Substituting for ω = 2kQ∞/c0 yields the linearized pressure coefficient on the panels

cp(k) = −2φ̄x(k)−
4ik

c0
φ̄(k) (57)

Substituting from equations 45 to 47 in expression 57 leads to

cp(k) = −2Kx(k)µ̄n(k) +
4ik

c0
K(k)µ̄n(k)

= 2Kx(k)

(

1

β
ūm(k) ◦ nξ + v̄m(k) ◦ nη + w̄m(k) ◦ nζ

)

−4ik

c0
K(k)

(

1

β
ūm(k) ◦ nξ + v̄m(k) ◦ nη + w̄m(k) ◦ nζ

)

(58)

which is the linearized equivalent of equation 56.

B Nonlinear pressure derivatives for rigid body mo-

tion

The pressure coefficient at the oscillation frequency, k, also referred to as the oscillatory
pressure, is given by equation 18

cp(k) = − 1

β
C̄0(k)(nξ ◦ ūm(k))− 2ū(0) ◦ ūm(k)− C̄0(k)(nη ◦ v̄m(k))− 2v̄(0) ◦ v̄m(k)
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−C̄0(k)(nζ ◦ w̄m(k))− 2w̄(0) ◦ w̄m(k)−
2ik

c0β
C̄1(k)(nξ ◦ ūm(k))

−2ik

c0
C̄1(k)(nη ◦ v̄m(k))−

2ik

c0
C̄1(k)(nζ ◦ w̄m(k)) (59)

Rigid-body motion is defined here as the translation and rotation of the centre of gravity
of a body in a body-fixed coordinate system, whereby the x axis is aligned with the chord
or fuselage centreline, the y axis is aligned with the span and the z axis is perpendicular
to the other two axes. To avoid confusion with the symbols used for the fluid velocities,
the translation velocities are denoted by ẋ(t), ẏ(t) and ż(t). The rotations are denoted by
φ(t), θ(t), ψ(t) for the roll, pitch and yaw angles. Assuming that the free stream vector
is given by Q∞ = (U∞, V∞, W∞) and assuming that all rotation angles are small, the
relative velocities between the flow and the body are given by

um(t) = V∞ψ(t)−W∞θ(t)− θ̇(t)zc + ψ̇(t)yc − ẋ(t)

vm(t) = −U∞ψ(t) +W∞φ(t) + φ̇(t)zc − ψ̇(t)xc − ẏ(t) (60)

wm(t) = U∞θ(t)− V∞φ(t) + θ̇(t)xc − φ̇(t)yc − ż(t)

where the first two terms in each velocity component are due to the rotation of the
freestream relative to the body-fixed axes, the next two terms are due to the rotational
velocities of the centre of gravity and the last terms due to the translation velocities of
the centre of gravity. The N × 1 vectors xc, yc, zc, are the coordinates of the N panel
control points, assuming that the centre of the coordinate system is the centre of gravity;
consequently the relative velocity vectors um(t), vm(t), wm(t) are also N × 1. Applying
the Fourier transform to equations 60 leads to

um(ω) = V∞ψ(ω)−W∞θ(ω)− iωθ(ω)zc + iωψ(ω)yc − iωx(ω)

vm(ω) = −U∞ψ(ω) +W∞φ(ω) + iωφ(ω)zc − iωψ(ω)xc − iωy(ω) (61)

wm(ω) = U∞θ(ω)− V∞φ(ω) + iωθ(ω)xc − iωφ(ω)yc − iωz(ω)

Recall the definition of the reduced frequency k = ωc0/2Q∞, such that ω = 2kQ∞/c0.
Dividing equations 61 throughout by Q∞ leads to

ūm(k) = V̄∞ψ(k)− W̄∞θ(k)−
2ik

c0
θ(k)zc +

2ik

c0
ψ(k)yc −

2ik

c0
x(k)

v̄m(k) = −Ū∞ψ(k) + W̄∞φ(k) +
2ik

c0
φ(k)zc −

2ik

c0
ψ(k)xc −

2ik

c0
y(k) (62)

w̄m(k) = Ū∞θ(k)− V̄∞φ(k) +
2ik

c0
θ(k)xc −

2ik

c0
φ(k)yc −

2ik

c0
z(k)

Aircraft aerodynamic stability derivatives are usually expressed as derivatives of non-
dimensional aerodynamic load coefficients with respect to non-dimensional quantities

ū(t) =
1

Q∞

ẋ(t), v̄(t) =
1

Q∞

ẏ(t), w̄(t) =
1

Q∞

ż(t)

¯̇u(t) =
c0

2Q2
∞

ẍ(t), ¯̇v(t) =
b

2Q2
∞

ÿ(t), ¯̇w(t) =
c0

2Q2
∞

z̈(t)
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p̄(t) =
b

2Q∞

φ̇(t), q̄(t) =
c0

2Q∞

θ̇(t), r̄(t) =
b

2Q∞

ψ̇(t)

¯̇p(t) =

(

b

2Q∞

)2

φ̈(t), ¯̇q(t) =

(

c0
2Q∞

)2

θ̈(t), ¯̇r(t) =

(

b

2Q∞

)2

ψ̈(t)

where b is the span. In the frequency domain, these definitions become

ū(k) =

(

2ik

c0

)

x(k), v̄(k) =

(

2ik

c0

)

y(k), w̄(k) =

(

2ik

c0

)

z(k)

¯̇u(k) =
c0
2

(

2ik

c0

)2

x(k), ¯̇v(k) =
b

2

(

2ik

c0

)2

y(k), ¯̇w(k) =
c0
2

(

2ik

c0

)2

z(k)

p̄(k) =
b

2

(

2ik

c0

)

φ(k), q̄(k) =
c0
2

(

2ik

c0

)

θ(k), r̄(k) =
b

2

(

2ik

c0

)

ψ(k) (63)

¯̇p(k) =

(

b

2

)2(
2ik

c0

)2

φ(k), ¯̇q(k) =
(c0
2

)2
(

2ik

c0

)2

θ(k), ¯̇r(k) =

(

b

2

)2(
2ik

c0

)2

ψ(k)

In order to obtain the derivatives of cp(k) with respect to ū(k) and ¯̇u(k), equations 62
are substituted into equation 59, after setting ȳ(k) = z̄(k) = φ(k) = θ(k) = ψ(k) = 0.
Then, equation 59 becomes

cp(k) = − 1

β
C̄0(k)

(

nξ

(

−2ik

c0
x(k)

))

− 2ū(0)

(

−2ik

c0
x(k)

)

− 2ik

c0β
C̄1(k)

(

nξ

(

−2ik

c0
x(k)

))

where the Hadamard product is no longer required since x(k) is a scalar. Substituting for
ū(k) and ¯̇u(k) from equations 63 leads to

cp(k) =
1

β
C̄0(k)nξū(k) + 2ū(0)ū(k) +

2

c0β
C̄1(k)nξ

¯̇u(k)

Consequently, the pressure derivatives with respect to ū(k) and ¯̇u(k) are given by

cpu(k) =
1

β
C̄0(k)nξ + 2ū(0) (64)

cpu̇(k) =
2

c0β
C̄1(k)nξ (65)

Similarly, for the derivatives of cp(k) with respect to v̄(k) and ¯̇v(k), we set x(k) = z(k) =
φ(k) = θ(k) = ψ(k) = 0 in equations 62 and substitute them in equation 59 to obtain

cp(k) = −C̄0(k)nη

(

−2ik

c0
y(k)

)

− 2v̄(0)

(

−2ik

c0
y(k)

)

−2ik

c0
C̄1(k)nη

(

−2ik

c0
y(k)

)
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Substituting for v̄(k) and ¯̇v(k) from equations 63 leads to the pressure derivatives

cpv(k) = C̄0(k)nη + 2v̄(0) (66)

cpv̇(k) =
2

b
C̄1(k)nη (67)

Repeating the procedure for the derivatives of cp(k) with respect to w̄ and ¯̇w, we obtain

cpw(k) = C̄0(k)nζ + 2w̄(0) (68)

cpẇ(k) =
2

c0
C̄1(k)nζ (69)

The derivatives with respect to φ(k), p̄(k) and ¯̇p(k) are obtained by setting x(k) = y(k) =
z(k) = θ(k) = ψ(k) = 0 in equations 62 and substituting them into equation 59, so that

cp(k) = −C̄0(k)

(

nη ◦
(

W̄∞φ(k) +
2ik

c0
φ(k)zc

))

− 2v̄(0) ◦
(

W̄∞φ(k) +
2ik

c0
φ(k)zc

)

−C̄0(k)

(

nζ ◦
(

−V̄∞φ(k)−
2ik

c0
φ(k)yc

))

− 2w̄(0) ◦
(

−V̄∞φ(k)−
2ik

c0
φ(k)yc

)

−2ik

c0
C̄1(k)

(

nη ◦
(

W̄∞φ(k) +
2ik

c0
φ(k)zc

))

−2ik

c0
C̄1(k)

(

nζ ◦
(

−V̄∞φ(k)−
2ik

c0
φ(k)yc

))

Substituting from equations 63 for p̄(k) and ¯̇p(k) results in the derivatives

cpφ(k) = −C̄0(k)nηW̄∞ − 2v̄(0)W̄∞ + C̄0(k)nζ V̄∞ + 2w̄(0)V̄∞ (70)

cpp(k) =
2

b

(

−C̄0(k)(nη ◦ zc)− 2v̄(0) ◦ zc + C̄0(k)(nζ ◦ yc) + 2w̄(0)yc

−C̄1(k)nηW̄∞ + C̄1(k)nζ V̄∞
)

(71)

cpṗ(k) =

(

2

b

)2
(

−C̄1(k)(nη ◦ zc) + C̄1(k)(nζ ◦ yc)
)

(72)

Setting x(k) = y(k) = z(k) = φ(k) = ψ(k) = 0 in equations 62 and substituting them
into equation 59 leads to

cp(k) = − 1

β
C̄0(k)

(

nξ ◦
(

−W̄∞θ(k)−
2ik

c0
θ(k)zc

))

− 2ū(0) ◦
(

−W̄∞θ(k)−
2ik

c0
θ(k)zc

)

−C̄0(k)

(

nζ ◦
(

Ū∞θ(k) +
2ik

c0
θ(k)xc

))

− 2w̄(0) ◦
(

Ū∞θ(k) +
2ik

c0
θ(k)xc

)

− 2ik

c0β
C̄1(k)

(

nξ ◦
(

−W̄∞θ(k)−
2ik

c0
θ(k)zc

))

−2ik

c0
C̄1(k)

(

nζ ◦
(

Ū∞θ(k) +
2ik

c0
θ(k)xc

))
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Substituting from equations 63 for q̄(k) and ¯̇q(k) leads to

cpθ(k) =
1

β
C̄0(k)nξW̄∞ + 2ū(0)W̄∞ − C̄0(k)nζŪ∞ − 2w̄(0)Ū∞ (73)

cpq(k) =
2

c0

(

1

β
C̄0(k)(nξ ◦ zc) + 2ū(0) ◦ zc − C̄0(k)(nζ ◦ xc)− 2w̄(0) ◦ xc

+
1

β
C̄1(k)nξW̄∞ − C̄1(k)nζŪ∞

)

(74)

cpq̇(k) =

(

2

c0

)2(
1

β
C̄1(k)(nξ ◦ zc)− C̄1(k)(nζ ◦ xc)

)

(75)

Finally, setting x(k) = y(k) = z(k) = φ(k) = θ(k) = 0 in equations 62 and substituting
them into equation 59 leads to

cp(k) = − 1

β
C̄0(k)

(

nξ ◦
(

V̄∞ψ(k) +
2ik

c0
ψ(k)yc

))

− 2ū(0) ◦
(

V̄∞ψ(k) +
2ik

c0
ψ(k)yc

)

−C̄0(k)

(

nη ◦
(

−Ū∞ψ(k)−
2ik

c0
ψ(k)xc

))

− 2v̄(0) ◦
(

−Ū∞ψ(k)−
2ik

c0
ψ(k)xc

)

− 2ik

c0β
C̄1(k)

(

nξ ◦
(

V̄∞ψ(k) +
2ik

c0
ψ(k)yc

))

−2ik

c0
C̄1(k)

(

nη ◦
(

−Ū∞ψ(k)−
2ik

c0
ψ(k)xc

))

and the pressure derivatives in the yaw direction become

cpψ(k) = − 1

β
C̄0(k)nξV̄∞ − 2ū(0)V̄∞ + C̄0(k)nηŪ∞ + 2v̄(0)Ū∞ (76)

cpr(k) =
2

b

(

− 1

β
C̄0(k)(nξ ◦ yc)− 2ū(0) ◦ yc + C̄0(k)(nη ◦ xc) + 2v̄(0) ◦ xc

− 1

β
C̄1(k)nξV̄∞ + C̄1(k)nηŪ∞

)

(77)

cpṙ(k) =

(

2

b

)2(

− 1

β
C̄1(k)(nξ ◦ yc) + C̄1(k)(nη ◦ xc)

)

(78)

It should be noted that c0/2 in expressions 64 to 78 can be replaced by any other reference
chordwise length. Similarly, b/2 can be replaced by any other reference spanwise length.

C Pressure derivatives for pitching and plunging mo-

tion

Pitching and plunging motion is a special guess of rigid body motion whereby only two
degrees of freedom, pitch α(t) and plunge h(t) displacements; the latter is defined positive
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downwards. The coordinate system is usually not centred on the pitch axis, so that the
motion-induced velocities are given by a modified version of equations 22

um(ω) = −W∞α(ω)− iωα(ω)(zc − zf )

vm(ω) = 0

wm(ω) = U∞α(ω) + iωα(ω)(xc − xf ) + iωh(k)

where θ has been replaced by α for compatibility with Theodorsen theory, q has been
replaced by iωα and w has been replaced by iωh. All other degrees of freedom have been
set to zero. Note that Theodorsen theory ignores the um(ω) velocity and only makes use
of the upwash wm(ω). Substituting for ω = 2kQ∞/c0 and dividing throughout by Q∞

leads to

ūm(k) = −W̄∞α(k)−
2ik

c0
α(k)(zc − zf )

v̄m(k) = 0 (79)

w̄m(k) = Ū∞α(k) +
2ik

c0
α(k)(xc − xf ) +

2ik

c0
h(k)

The pressure coefficient at the oscillation frequency, k, is still given by equation 18

cp(k) = − 1

β
C̄0(k)(nξ ◦ ūm(k))− 2ū(0) ◦ ūm(k)− C̄0(k)(nη ◦ v̄m(k))− 2v̄(0) ◦ v̄m(k)

−C̄0(k)(nζ ◦ w̄m(k))− 2w̄(0) ◦ w̄m(k)−
2ik

c0β
C̄1(k)(nξ ◦ ūm(k))

−2ik

c0
C̄1(k)(nη ◦ v̄m(k))−

2ik

c0
C̄1(k)(nζ ◦ w̄m(k)) (80)

Setting α(k) = 0 in equations 79 and substituting into equation 80 leads to

cp(k) = −C̄0(k)

(

nζ
2ik

c0
h(k)

)

− 2w̄
2ik

c0
h(k)− 2ik

c0
C̄1(k)

(

nζ
2ik

c0
h(k)

)

Writing the pressure coefficient as

cp(k) = ikcp
ḣ
(k)h(k) + (ik)2cp

ḧ
(k)h(k)

leads to the plunge pressure derivatives

cp
ḣ
(k) = − 2

c0
C̄0(k)nζ −

4

c0
w̄(0) (81)

cp
ḧ
(k) = −

(

2

c0

)2

C̄1(k)nζ (82)

Setting h(k) = 0 in equations 79 and substituting into equation 80 leads to

cp(k) = − 1

β
C̄0(k)

(

nξ ◦
(

−W̄∞α(k)−
2ik

c0
α(k)(zc − zf)

))
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−2ū(0) ◦
(

−W̄∞α(k)−
2ik

c0
α(k)(zc − zf )

)

−C̄0(k)

(

nζ ◦
(

Ū∞α(k) +
2ik

c0
α(k)(xc − xf )

))

−2w̄(0) ◦
(

Ū∞α(k) +
2ik

c0
α(k)(xc − xf )

)

− 2ik

c0β
C̄1(k)

(

nξ ◦
(

−W̄∞α(k)−
2ik

c0
α(k)(zc − zf )

))

−2ik

c0
C̄1(k)

(

nζ ◦
(

Ū∞α(k) +
2ik

c0
α(k)(xc − xf )

))

Finally, writing the pressure coefficient as

cp(k) = cpα(k)α(k) + ikcpα̇(k)α(k) + (ik)2cpα̈(k)α(k)

leads to the plunge pressure derivatives

cpα(k) =
W̄∞

β
C̄0(k)nξ + 2W̄∞ū(0)− Ū∞C̄0(k)nζ − 2Ū∞w̄(0) (83)

cpα̇(k) =
2

c0β
C̄0(k) (nξ ◦ (zc − zf )) +

4

c0
ū(0) ◦ (zc − zf)

− 2

c0
C̄0(k) (nζ ◦ (xc − xf))−

4

c0
w̄(0) ◦ (xc − xf )

+
2W̄∞

c0β
C̄1(k)nξ −

2Ū∞

c0
C̄1(k)nζ (84)

cpα̈(k) =

(

2

c0

)2
1

β
C̄1(k) (nξ ◦ (zc − zf ))−

(

2

c0

)2

C̄1(k) (nζ ◦ (xc − xf)) (85)

C.1 Linearised pressure derivatives for pitching and plunging

motion

Equations 81 to 85 give the pressure derivatives obtained from the second order oscilla-
tory pressure equation 80. Their linearized equivalents are obtained from the linearized
pressure equation 58

cp(k) = 2Kx(k)

(

1

β
ūm(k) ◦ nξ + v̄m(k) ◦ nη + w̄m(k) ◦ nζ

)

−4ik

c0
K(k)

(

1

β
ūm(k) ◦ nξ + v̄m(k) ◦ nη + w̄m(k) ◦ nζ

)

(86)

Setting α(k) = 0 in equations 79 and substituting into equation 86 leads to

cp(k) = 2Kx(k)nζ
2ik

c0
h(k)− 4ik

c0
K(k)nζ

2ik

c0
h(k)
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such that the linearized pressure derivatives in the plunge direction become

cp
ḣ
(k) =

4

c0
Kx(k)nζ (87)

cp
ḧ
(k) = − 8

c20
K(k)nζ (88)

Setting h(k) = 0 in equations 79 and substituting into equation 86 results in

cp(k) =
2

β
Kx(k)

((

−W̄∞α(k)−
2ik

c0
α(k)(zc − zf)

)

◦ nξ

)

+2Kx(k)

((

Ū∞α(k) +
2ik

c0
α(k)(xc − xf )

)

◦ nζ

)

− 4ik

c0β
K(k)

((

−W̄∞α(k)−
2ik

c0
α(k)(zc − zf)

)

◦ nξ

)

−4ik

c0
K(k)

((

Ū∞α(k) +
2ik

c0
α(k)(xc − xf )

)

◦ nζ

)

Consequently, the linearized pressure derivatives in the plunge direction are

cpα(k) = −2W̄∞

β
Kx(k)nξ + 2Ū∞Kx(k)nζ (89)

cpα̇(k) = − 4

c0β
Kx(k)(nξ ◦ (zc − zf)) +

4

c0
Kx(k)(nζ ◦ (xc − xf ))

+
4W̄∞

c0β
K(k)nξ −

4Ū∞

c0
K(k)nζ (90)

cpα̈(k) =
8

c20β
K(k)(nξ ◦ (zc − zf ))−

8

c20
K(k)(nζ ◦ (xc − xf )) (91)

D Nonlinear pressure derivatives for flexible motion

The pressure coefficient at the oscillation frequency, k, is still given by equation 18

cp(k) = − 1

β
C̄0(k)(nξ ◦ ūm(k))− 2ū(0) ◦ ūm(k)− C̄0(k)(nη ◦ v̄m(k))− 2v̄(0) ◦ v̄m(k)

−C̄0(k)(nζ ◦ w̄m(k))− 2w̄(0) ◦ w̄m(k)−
2ik

c0β
C̄1(k)(nξ ◦ ūm(k))

−2ik

c0
C̄1(k)(nη ◦ v̄m(k))−

2ik

c0
C̄1(k)(nζ ◦ w̄m(k)) (92)

For flexible motion, the motion-induced relative velocities on the surface are given by
equations 23

ūm(k) = V̄∞Φ̃ψq(k)− W̄∞Φ̃θq(k)−
2ik

c0
Φ̃xq(k)

v̄m(k) = −Ū∞Φ̃ψq(k) + W̄∞Φ̃φq(k)−
2ik

c0
Φ̃yq(k) (93)

w̄m(k) = Ū∞Φ̃θq(k)− V̄∞Φ̃φq(k)−
2ik

c0
Φ̃zq(k)
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Setting Φ̃φ = Φ̃θ = Φ̃ψ = Φ̃y = Φ̃z = 0 and substituting equations 93 into 92 leads to

cp(k) = − 1

β
C̄0(k)

(

nξ ◦
(

−2ik

c0
Φ̃xq(k)

))

− 2ū(0) ◦
(

−2ik

c0
Φ̃xq(k)

)

− 2ik

c0β
C̄1(k)

(

nξ ◦
(

−2ik

c0
Φ̃xq(k)

))

We then write cp(k) in the form

cp(k) = ikcpẋ(k)q(k) + (ik)2cpẍ(k)q(k)

where the pressure derivatives due to motion parallel to the Φ̃x components of the mode
shapes are given by

cpẋ(k) =
2

c0β
C̄0(k)

(

nξ ◦ Φ̃x

)

+
4

c0
ū(0) ◦ Φ̃x (94)

cpẍ(k) =
4

c20β
C̄1(k)

(

nξ ◦ Φ̃x

)

(95)

Similarly, the pressure derivatives do to motion parallel to the Φ̃y components of the
mode shapes become

cpẏ(k) =
2

c0
C̄0(k)

(

nη ◦ Φ̃y

)

+
4

c0
v̄(0) ◦ Φ̃y (96)

cpÿ(k) =
4

c20
C̄1(k)

(

nη ◦ Φ̃y

)

(97)

while the pressure derivatives in the Φ̃z direction are

cpż(k) =
2

c0
C̄0(k)

(

nζ ◦ Φ̃z

)

+
4

c0
w̄(0) ◦ Φ̃z (98)

cpz̈(k) =
4

c20
C̄1(k)

(

nζ ◦ Φ̃z

)

(99)

Next, we set Φ̃θ = Φ̃ψ = Φ̃x = Φ̃y = Φ̃z = 0 and substitute equations 93 into 92 to
obtain

cp(k) = −C̄0(k)
(

nη ◦
(

W̄∞Φ̃φq(k)
))

− 2v̄(0) ◦
(

W̄∞Φ̃φq(k)
)

−C̄0(k)
(

nζ ◦
(

−V̄∞Φ̃φq(k)
))

− 2w̄(0) ◦
(

−V̄∞Φ̃φq(k)
)

−2ik

c0
C̄1(k)

(

nη ◦
(

W̄∞Φ̃φq(k)
))

− 2ik

c0
C̄1(k)

(

nζ ◦
(

−V̄∞Φ̃φq(k)
))

The pressure coefficient equation is written as

cp(k) = cpφ(k)q(k) + ikcp
φ̇
(k)q(k)
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where

cpφ(k) = −W̄∞C̄0(k)
(

nη ◦ Φ̃φ

)

− 2W̄∞v̄(0) ◦ Φ̃φ

+V̄∞C̄0(k)
(

nζ ◦ Φ̃φ

)

+ 2V̄∞w̄(0) ◦ Φ̃φ (100)

cp
φ̇
(k) = −2W̄∞

c0
C̄1(k)

(

nη ◦ Φ̃φ

)

+
2V̄∞
c0

C̄1(k)
(

nζ ◦ Φ̃φ

)

(101)

Again, we set Φ̃φ = Φ̃ψ = Φ̃x = Φ̃y = Φ̃z = 0 and substitute equations 93 into 92 to
obtain

cp(k) = − 1

β
C̄0(k)

(

nξ ◦
(

−W̄∞Φ̃θq(k)
))

− 2ū(0) ◦
(

−W̄∞Φ̃θq(k)
)

−C̄0(k)
(

nζ ◦
(

Ū∞Φ̃θq(k)
))

− 2w̄(0) ◦
(

Ū∞Φ̃θq(k)
)

− 2ik

c0β
C̄1(k)

(

nξ ◦
(

−W̄∞Φ̃θq(k)
))

− 2ik

c0
C̄1(k)

(

nζ ◦
(

Ū∞Φ̃θq(k)
))

so that the pressure derivatives in the Φ̃θ direction become

cpθ(k) =
W̄∞

β
C̄0(k)

(

nξ ◦ Φ̃θ

)

+ 2W̄∞ū(0) ◦ Φ̃θ

−Ū∞C̄0(k)
(

nζ ◦ Φ̃θ

)

− 2Ū∞w̄(0) ◦ Φ̃θ (102)

cp
θ̇
(k) =

2W̄∞

c0β
C̄1(k)

(

nξ ◦ Φ̃θ

)

− 2Ū∞

c0
C̄1(k)

(

nζ ◦ Φ̃θ

)

(103)

Finally, setting Φ̃φ = Φ̃θ = Φ̃x = Φ̃y = Φ̃z = 0 and repeating the procedure yields

cp(k) = − 1

β
C̄0(k)

(

nξ ◦
(

V̄∞Φ̃ψq(k)
))

− 2ū(0) ◦
(

V̄∞Φ̃ψq(k)
)

−C̄0(k)
(

nη ◦
(

−Ū∞Φ̃ψq(k)
))

− 2v̄(0) ◦
(

−Ū∞Φ̃ψq(k)
)

− 2ik

c0β
C̄1(k)

(

nξ ◦
(

V̄∞Φ̃ψq(k)
))

− 2ik

c0
C̄1(k)

(

nη ◦
(

−Ū∞Φ̃ψq(k)
))

so that the pressure derivatives in the Φ̃ψ direction become

cpψ(k) = − V̄∞
β

C̄0(k)
(

nξ ◦ Φ̃ψq(k)
)

− 2V̄∞ū(0) ◦ Φ̃ψ

+Ū∞C̄0(k)
(

nη ◦ Φ̃ψ

)

+ 2Ū∞v̄(0) ◦ Φ̃ψ (104)

cp
ψ̇
(k) = −2V̄∞

c0β
C̄1(k)

(

nξ ◦ Φ̃ψ

)

+
2Ū∞

c0
C̄1(k)

(

nη ◦ Φ̃ψ

)

(105)
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